Homomorphism(V, W, f) : ModRed, ModRed, Map -> ModRedHom
Homomorphism(V, W, f) : ModRed, ModRed, CombFreeModHom -> ModRedHom
Construct a homomorphism of group representations described by f : V to W.
Does not verify that the map indeed describes a
homomorphism of group representations.
    BaseChangeCodomain: BoolElt         Default: false
Construct a homomorphism of group representations f : V to W,
mapping the basis of V to S.
If BaseChangeCodomain is true, returns a homomorphism
f : V to W tensor R, where R is the base ring of V.
Does not verify that the map indeed describes a
homomorphism of group representations.
Homomorphism(M, N, f) : CombFreeMod, CombFreeMod, Map -> CombFreeModHom
Construct a homomorphism of R-modules described by f : M to N.
    BaseChangeCodomain: BoolElt         Default: false
Construct a homomorphism of R-modules f : M to N,
mapping the basis of M to S.
If BaseChangeCodomain is true, returns a homomorphism
f : M to N tensor R, where R is the base ring of V.
Domain(f) : CombFreeModHom -> CombFreeMod
The domain of f.
Codomain(f) : CombFreeModHom -> CombFreeMod
The codomain of f.
The kernel of f, as a representation of G.
Evaluate(f, v) : CombFreeModHom, CombFreeModElt -> CombFreeModElt
v @ f : ModRedElt, ModRedHom -> ModRedElt
v @ f : CombFreeModElt, CombFreeModHom -> CombFreeModElt
Returns f(v).
w @@ f : CombFreeModElt, CombFreeModHom -> CombFreeModElt
Given a homomorphism f : V to W, and an element
w ∈W, returns an element v ∈V such that
f(v) = w.
V2.29, 21 October 2025