- Introduction
- Creation of Group Representations
- General Group Representations
- Subrepresentations
- Natural Representations
- TrivialRepresentation(G, R) : Grp, Rng -> ModRed
- StandardRepresentation(G) : GrpMat -> ModRed
- SpinorNormRepresentation(G, d) : GrpRed, RngIntElt -> ModRed
- Rho(G, k, j) : GrpMat, RngIntElt, RngIntElt -> ModRed
- SymSpinor(G, d, k) : GrpRed, RngIntElt, RngIntElt -> ModRed
- AltSpinor(G, d) : GrpRed, RngIntElt, RngIntElt -> ModRed
- RadicalSignCharacterSinglePrime(G, p) : GrpRed, RngIntElt -> ModRed
- RadicalSignCharacter(G, d) : GrpRed, RngIntElt -> ModRed
- SpinRepresentation(G, p) : GrpRed, RngIntElt -> ModRed
- New Representations from Old
- DeterminantRepresentation(G) : GrpMat -> ModRed
- SymmetricRepresentation(V, n) : ModRed, RngIntElt -> ModRed
- AlternatingRepresentation(V, n) : ModRed, RngIntElt -> ModRed
- DualRepresentation(V) : ModRed -> ModRed
- TensorProduct(V, W) : ModRed, ModRed -> ModRed
- TensorPower(V, d) : ModRed, RngIntElt -> ModRed
- Pullback(V, f, G) : ModRed, MonStgElt, Grp -> ModRed
- New Combinatorially Free Modules from Old
- Highest Weight Representations
- Creation of Combinatorial Free Modules
- Basic Properties
- Operations on Group Representations
- Elements of Group Representations
- Homomorphisms of Group Representations
- Creation of Homomorphisms between Group Representations
- Homomorphism(V, W, f) : ModRed, ModRed, UserProgram -> ModRedHom
- Homomorphism(V, W, S) : ModRed, ModRed, SeqEnum -> ModRedHom
- Homomorphism(M, N, f) : CombFreeMod, CombFreeMod, UserProgram -> CombFreeModHom
- Homomorphism(M, N, S) : CombFreeMod, CombFreeMod, SeqEnum -> CombFreeModHom
- Properties of Homomorphisms of Group Representations
- Operations on Homomorphisms of Group Representations
- Bibliography
V2.29, 26 September 2025