Automorphisms of Fields

Magma now (from V2.29) contains a new structure for field automorphisms. A field automorphism is of type FldAut. Also supports the swap automorphism of F x F, when constructed as an associative algebra. DirectSum(Algebra(F,F), Algebra(F,F));

Contents

Creation of Field Automorphisms

FieldAutomorphism(F, g) : Fld, GrpPermElt -> FldAut
FieldAutomorphism(F, g) : AlgAss[Fld], GrpPermElt -> FldAut
Given an element g of a permutation group G, satisfying G simeq Aut(F), returns an element α ∈Aut(F) corresponding to g.
FieldAutomorphism(F, a) : Fld, Map[Fld,Fld] -> FldAut
FieldAutomorphism(F, a) : Fld, Intrinsic -> FldAut
FieldAutomorphism(F, a) : Fld, UserProgram -> FldAut
FieldAutomorphism(F, a) : AlgAss[Fld], Map[AlgAss[Fld],AlgAss[Fld]] -> FldAut
Given a function, an intrinsic, or a map between fields a describing an automorphism a : F to F, returns the corresponding field automorphism.
IdentityAutomorphism(F) : Fld -> FldAut
The identity automorphism of the field F.
FieldAutomorphism(K) : AlgAss[Fld] -> FldAut
If K = F x F, return the swap involution.
ChangeRing(a, K) : FldAut, Fld -> FldAut
ChangeRing(a, K) : FldAut, AlgAss[Fld] -> FldAut
If F simeq K, return the element of Aut(K) corresponding to a ∈Aut(F).

Properties of Field Automorphisms

BaseField(a) : FldAut -> Fld
The field F for which a ∈Aut(F).
Order(a) : FldAut -> RngIntElt
The order of a.
FixedField(a) : FldAut -> Fld
The fixed field of a.
Automorphism(a) : FldAut -> Map[Fld, Fld]
The map defined by a : F to F.
FixedFieldSymbol(a, P) : FldAut, RngOrdIdl -> RngIntElt
FixedFieldSymbol(a, P) : FldAut, RngInt -> RngIntElt
Returns -1, 0 or 1 if P is inert, ramified, or split, respectively in the fixed field of a.

Predicates on Field Automorphisms

IsIdentity(a) : FldAut -> BoolElt
Returns true iff a is the identity automorphism.

Arithmetic of Field Automorphisms

a * b : FldAut, FldAut -> FldAut
The automorphism given by a b, namely x |-> a(b(x)).
a ^ n : FldAut, RngIntElt -> FldAut
The automorphism an.
Inverse(a) : FldAut -> FldAut
The automorphism a - 1.
a eq b : FldAut, FldAut -> BoolElt
Returns true iff a and b are automorphisms of the same field F, and a = b.
x @ a : FldElt, FldAut -> FldElt
x @ a : RngOrdElt, FldAut -> RngOrdElt
x @ a : RngIntElt, FldAut -> RngIntElt
x @ a : AlgAssElt[Fld], FldAut -> AlgAssElt[Fld]
Evaluate a(x).
v @ a : ModTupFldElt[Fld], FldAut -> ModTupFldElt[Fld]
Given a vector v = (x1, ...., xn) in an F-vector space V, apply a to each coordinate, to get a(v) = (a(x1), ..., a(xn)).
M @ a : ModMatFldElt[Fld], FldAut -> ModMatFldElt[Fld]
M @ a : AlgMatElt[Fld], FldAut -> AlgMatElt[Fld]
M @ a : GrpMatElt[Fld], FldAut -> GrpMatElt[Fld]
M @ a : AlgMatElt[AlgAss[Fld]], FldAut -> AlgMatElt[AlgAss[Fld]]
Given a matrix M = (xij) with entries in F, apply a to each coordinate, to get a(M) = (a(xij)).
I @ a : RngOrdFracIdl[FldOrd], FldAut -> RngOrdFracIdl[FldOrd]
I @ a : RngInt, FldAut -> RngInt
I @ a : RngIntFracIdl, FldAut -> RngIntFracIdl
Given a fraction ideal I of an order R, and an automorphism a of the fraction field of R, return the fractional ideal a(I).
Trace(P, a) : RngOrdFracIdl, FldAut -> RngOrdFracIdl
Trace(P, a) : RngIntFracIdl, FldAut -> RngIntFracIdl
    Mult: RngIntElt                     Default: Order(a)
The image of the map x |-> ∑j=0m - 1 ∑aj(x) on P, where m is determined by Mult.
Norm(P, a) : RngOrdFracIdl, FldAut -> RngOrdFracIdl
Norm(P, a) : RngIntFracIdl, FldAut -> RngIntFracIdl
    Mult: RngIntElt                     Default: Order(a)
The image of the map x |-> ∏j=0m - 1 ∑aj(x) on P, where m is determined by Mult.
V2.29, 21 October 2025