- PolarSpace
- polarspace
- PolarSpaceType
- PolarToComplex
- Pole
- PoleDivisor
- Poles
- Pollard
- PollardRho
- Poly
- poly
- poly bang
- poly-bang-2
- poly-elts
- poly-ex
- poly-fact
- Poly-Hensel
- poly-ops
- poly-ops-ex
- poly-ring-ex
- poly-rings
- poly_fact
- Polycyclic
- PolycyclicGroup< X | R > : List(Identifiers), List(GrpFPRel) -> GrpPC, Hom
- AbelianGroup< X | R > : List(Identifiers), List(GrpAbRel) -> GrpAb, Hom(GrpAb)
- Group< X | R > : List(Identifiers), List(GrpFPRel) -> GrpFP, Hom(Grp)
- IsPolycyclic(G : parameters) : GrpMat -> BoolElt
- IsPolycyclicByFinite(G : parameters) : GrpMat -> BoolElt
- PolycyclicGenerators(G) : GrpMat -> [ GrpPCElt ]
- PolycyclicGroup< x1, ..., xn | R : parameters > : List(Identifiers), List(GrpFPRel) -> GrpGPC, Map
- PolycyclicGroup< x1, ..., xn | R : parameters > : List(Identifiers), List(GrpFPRel) -> GrpPC, Map
- polycyclic
- polycyclic-groups
- polycyclic-groups-introduction
- PolycyclicGenerators
- PolycyclicGroup
- PolycyclicGroup< X | R > : List(Identifiers), List(GrpFPRel) -> GrpPC, Hom
- AbelianGroup< X | R > : List(Identifiers), List(GrpAbRel) -> GrpAb, Hom(GrpAb)
- Group< X | R > : List(Identifiers), List(GrpFPRel) -> GrpFP, Hom(Grp)
- PolycyclicGroup< x1, ..., xn | R : parameters > : List(Identifiers), List(GrpFPRel) -> GrpGPC, Map
- PolycyclicGroup< x1, ..., xn | R : parameters > : List(Identifiers), List(GrpFPRel) -> GrpPC, Map
- GrpGPC_PolycyclicGroup (Example H81E2)
- GrpPC_PolycyclicGroup (Example H70E2)
- Grp_PolycyclicGroup (Example H64E5)
- Polygon
- IsNewtonPolygonOf(N, f) : NwtnPgon, RngElt -> BoolElt
- IsPolygon(G) : Grph -> BoolElt
- NewtonPolygon(C) : Crv -> NwtnPgon
- NewtonPolygon(L) : RngDiffOpElt -> NwtnPgon, RingDiffOpElt
- NewtonPolygon(L, p) : RngDiffOpElt, PlcFunElt -> NwtnPgon, RingDiffOpElt
- NewtonPolygon(f) : RngMPolElt -> NwtnPgon
- NewtonPolygon(f) : RngUPolElt -> NwtnPgon
- NewtonPolygon(f) : RngUPolElt -> NwtnPgon
- NewtonPolygon(f, p) : RngUPolElt, PlcFunElt -> NwtnPgon
- NewtonPolygon(f, p) : RngUPolElt, RngOrdIdl -> NwtnPgon
- NewtonPolygon(f) : RngUPolXPadElt[RngXPad] -> NwtnPgon
- NewtonPolygon(V) : SeqEnum -> NwtnPgon
- PolygonGraph(n : parameters) : RngIntElt -> GrphUnd
- RamificationPolygon(L) : FldXPad -> NwtnPgon
- polygon
- PolygonGraph
- Polygons
- polyhedra
V2.29, 21 October 2025