Permutation Representations of Linear Groups

Each of the functions in this family returns two values:

(a)
A permutation group G corresponding to the action of a designated matrix group M on a vector space V; and
(b)
An indexed set of affine or projective points on which M acts, such that the indexing gives the correspondence between this set and the G-set of M.

Furthermore, most of the function in this family are parameterized by two objects: the degree and the coefficient field of the matrix group. These can be supplied in one of the following three forms:

(i)
Integers n and q corresponding to the degree and the field GF(q) of M (GF(q2) in the case of the unitary groups).
(ii)
An integer n and a finite field K corresponding to the degree and the coefficient field of M.
(iii)
A vector space V = Kn on which M naturally acts.

The Suzuki group, however, is only parametrised by the field, as the degree is always four. As such, it can be described by the integer q, the field K = GF(q), or the vector space K4.

AffineGeneralLinearGroup(arguments)
AGL(arguments)
AffineGeneralLinearGroup(n, q) : RngIntElt, RngIntElt -> GrpPerm, {@ ModTupFldElt @}
AffineGeneralLinearGroup(n, K) : RngIntElt, FldFin -> GrpPerm, {@ ModTupFldElt @}
AffineGeneralLinearGroup(V) : ModTupRng -> GrpPerm, {@ ModTupFldElt @}
AGL(n, q) : RngIntElt, RngIntElt -> GrpPerm, {@ ModTupFldElt @}
AGL(n, K) : RngIntElt, FldFin -> GrpPerm, {@ ModTupFldElt @}
AGL(V) : ModTupRng -> GrpPerm, {@ ModTupFldElt @}
Construct the affine general linear group G = AGL(n, q), i.e., the group corresponding to the action of GL(n, q) on the affine points of the n-dimensional vector space V over K = GF(q). The function returns:
(a)
The group G;
(b)
An indexed set giving the correspondence between the affine points and the G-set of G.
AffineSpecialLinearGroup(arguments)
ASL(arguments)
AffineSpecialLinearGroup(n, q) : RngIntElt, RngIntElt -> GrpPerm, {@ ModTupFldElt @}
AffineSpecialLinearGroup(n, K) : RngIntElt, FldFin -> GrpPerm, {@ ModTupFldElt @}
AffineSpecialLinearGroup(V) : ModTupRng -> GrpPerm, {@ ModTupFldElt @}
ASL(n, q) : RngIntElt, RngIntElt -> GrpPerm, {@ ModTupFldElt @}
ASL(n, K) : RngIntElt, FldFin -> GrpPerm, {@ ModTupFldElt @}
ASL(V) : ModTupRng -> GrpPerm, {@ ModTupFldElt @}
Construct the affine special linear group G = ASL(n, q), i.e., the group corresponding to the action of SL(n, q) on the affine points of the n-dimensional vector space V over K = GF(q). The function returns:
(a)
The group G;
(b)
An indexed set giving the correspondence between the affine points and the G-set of G.
AffineGammaLinearGroup(arguments)
AGammaL(arguments)
AffineGammaLinearGroup(n, q) : RngIntElt, RngIntElt -> GrpPerm, {@ ModTupFldElt @}
AffineGammaLinearGroup(n, K) : RngIntElt, FldFin -> GrpPerm, {@ ModTupFldElt @}
AffineGammaLinearGroup(V) : ModTupRng -> GrpPerm, {@ ModTupFldElt @}
AGammaL(n, q) : RngIntElt, RngIntElt -> GrpPerm, {@ ModTupFldElt @}
AGammaL(n, K) : RngIntElt, FldFin -> GrpPerm, {@ ModTupFldElt @}
AGammaL(V) : ModTupRng -> GrpPerm, {@ ModTupFldElt @}
Construct the affine gamma linear group G = AGammaL(n, q), i.e., the group corresponding to the action of GammaL(n, q) (the automorphism group of GL(n, q)) on the affine points of the n-dimensional vector space V over K = GF(q). The function returns:
(a)
The group G;
(b)
An indexed set giving the correspondence between the points and the G-set of G.
AffineSigmaLinearGroup(arguments)
ASigmaL(arguments)
AffineSigmaLinearGroup(n, q) : RngIntElt, RngIntElt -> GrpPerm, {@ ModTupFldElt @}
AffineSigmaLinearGroup(n, K) : RngIntElt, FldFin -> GrpPerm, {@ ModTupFldElt @}
AffineSigmaLinearGroup(V) : ModTupRng -> GrpPerm, {@ ModTupFldElt @}
ASigmaL(n, q) : RngIntElt, RngIntElt -> GrpPerm, {@ ModTupFldElt @}
ASigmaL(n, K) : RngIntElt, FldFin -> GrpPerm, {@ ModTupFldElt @}
ASigmaL(V) : ModTupRng -> GrpPerm, {@ ModTupFldElt @}
Construct the affine sigma linear group G = ASigmaL(n, q), i.e., the group corresponding to the action of SigmaL(n, q) (the automorphism group of SL(n, q)) on the affine points of the n-dimensional vector space V over K = GF(q). The function returns:
(a)
The group G;
(b)
An indexed set giving the correspondence between the points and the G-set of G.
AffineSymplecticGroup(arguments)
ASp(arguments)
AffineSymplecticGroup(n, q) : RngIntElt, RngIntElt -> GrpPerm, {@ ModTupFldElt @}
AffineSymplecticGroup(n, K) : RngIntElt, FldFin -> GrpPerm, {@ ModTupFldElt @}
AffineSymplecticGroup(V) : ModTupRng -> GrpPerm, {@ ModTupFldElt @}
ASp(n, q) : RngIntElt, RngIntElt -> GrpPerm, {@ ModTupFldElt @}
ASp(n, K) : RngIntElt, FldFin -> GrpPerm, {@ ModTupFldElt @}
ASp(V) : ModTupRng -> GrpPerm, {@ ModTupFldElt @}
Construct the affine symplectic linear group G, i.e., the group corresponding to the action of Sp(n, q) on the affine points of the n-dimensional vector space V over K = GF(q). The function returns:
(a)
The group G;
(b)
An indexed set giving the correspondence between the affine points and the G-set of G.
AffineSigmaSymplecticGroup(arguments)
ASigmaSp(arguments)
AffineSigmaSymplecticGroup(n, q) : RngIntElt, RngIntElt -> GrpPerm, {@ ModTupFldElt @}
AffineSigmaSymplecticGroup(n, K) : RngIntElt, FldFin -> GrpPerm, {@ ModTupFldElt @}
AffineSigmaSymplecticGroup(V) : ModTupRng -> GrpPerm, {@ ModTupFldElt @}
ASigmaSp(n, q) : RngIntElt, RngIntElt -> GrpPerm, {@ ModTupFldElt @}
ASigmaSp(n, K) : RngIntElt, FldFin -> GrpPerm, {@ ModTupFldElt @}
ASigmaSp(V) : ModTupRng -> GrpPerm, {@ ModTupFldElt @}
Construct the affine sigma symplectic linear group G, i.e., the group corresponding to the action of Sp(n, q) on the affine points of the n-dimensional vector space V over K = GF(q), plus the action of a field automorphism. The function returns:
(a)
The group G;
(b)
An indexed set giving the correspondence between the affine points and the G-set of G.
ProjectiveGeneralLinearGroup(arguments)
PGL(arguments)
ProjectiveGeneralLinearGroup(n, q) : RngIntElt, RngIntElt -> GrpPerm, {@ ModTupFldElt @}
ProjectiveGeneralLinearGroup(n, K) : RngIntElt, FldFin -> GrpPerm, {@ ModTupFldElt @}
ProjectiveGeneralLinearGroup(V) : ModTupRng -> GrpPerm, {@ ModTupFldElt @}
PGL(n, q) : RngIntElt, RngIntElt -> GrpPerm, {@ ModTupFldElt @}
PGL(n, K) : RngIntElt, FldFin -> GrpPerm, {@ ModTupFldElt @}
PGL(V) : ModTupRng -> GrpPerm, {@ ModTupFldElt @}
Construct the projective general linear group G = PGL(n, q), i.e., the group corresponding to the action of GL(n, q) on the projective points of the n-dimensional vector space V over K = GF(q), where n ≥2 and q is a prime power. The function returns:
(a)
The group G;
(b)
An indexed set of the generators of the 1-dimensional subspaces of K(n), giving the correspondence between these vectors and the G-set of G.
ProjectiveSpecialLinearGroup(arguments)
PSL(arguments)
ProjectiveSpecialLinearGroup(n, q) : RngIntElt, RngIntElt -> GrpPerm, {@ ModTupFldElt @}
ProjectiveSpecialLinearGroup(n, K) : RngIntElt, FldFin -> GrpPerm, {@ ModTupFldElt @}
ProjectiveSpecialLinearGroup(V) : ModTupRng -> GrpPerm, {@ ModTupFldElt @}
PSL(n, q) : RngIntElt, RngIntElt -> GrpPerm, {@ ModTupFldElt @}
PSL(n, K) : RngIntElt, FldFin -> GrpPerm, {@ ModTupFldElt @}
PSL(V) : ModTupRng -> GrpPerm, {@ ModTupFldElt @}
Construct the projective special linear group G = PSL(n, q), i.e., the group corresponding to the action of SL(n, q) on the projective points of the n-dimensional vector space V over K = GF(q), where n ≥2 and q is a prime power. The function returns:
(a)
The group G;
(b)
An indexed set of the generators of the 1-dimensional subspaces of K(n), giving the correspondence between these vectors and the G-set of G.
ProjectiveGammaLinearGroup(arguments)
PGammaL(arguments)
ProjectiveGammaLinearGroup(n, q) : RngIntElt, RngIntElt -> GrpPerm, {@ ModTupFldElt @}
ProjectiveGammaLinearGroup(n, K) : RngIntElt, FldFin -> GrpPerm, {@ ModTupFldElt @}
ProjectiveGammaLinearGroup(V) : ModTupRng -> GrpPerm, {@ ModTupFldElt @}
PGammaL(n, q) : RngIntElt, RngIntElt -> GrpPerm, {@ ModTupFldElt @}
PGammaL(n, K) : RngIntElt, FldFin -> GrpPerm, {@ ModTupFldElt @}
PGammaL(V) : ModTupRng -> GrpPerm, {@ ModTupFldElt @}
Construct an automorphism group G = PGammaL(n, q) of the projective general linear group B = PGL(n, q), by adding the field automorphisms of GF(q) to B. The permutation action corresponds to the natural action on 1-dimensional subspaces of the n-dimensional vector space V over the field K = GF(q), where n ≥2 and q is a prime power. The function returns:
(a)
The group G;
(b)
An indexed set giving the correspondence between the points and the G-set of G.
ProjectiveSigmaLinearGroup(arguments)
PSigmaL(arguments)
ProjectiveSigmaLinearGroup(n, q) : RngIntElt, RngIntElt -> GrpPerm, {@ ModTupFldElt @}
ProjectiveSigmaLinearGroup(n, K) : RngIntElt, FldFin -> GrpPerm, {@ ModTupFldElt @}
ProjectiveSigmaLinearGroup(V) : ModTupRng -> GrpPerm, {@ ModTupFldElt @}
PSigmaL(n, q) : RngIntElt, RngIntElt -> GrpPerm, {@ ModTupFldElt @}
PSigmaL(n, K) : RngIntElt, FldFin -> GrpPerm, {@ ModTupFldElt @}
PSigmaL(V) : ModTupRng -> GrpPerm, {@ ModTupFldElt @}
Construct an automorphism group G = PSigmaL(n, q) of the projective special linear group B = PSL(n, q), by adding the field automorphisms of GF(q) to B. The permutation action corresponds to the natural action on 1-dimensional subspaces of the n-dimensional vector space V over the field K = GF(q), where n ≥2 and q is a prime power. The function returns:
(a)
The group G;
(b)
An indexed set giving the correspondence between the points and the G-set of G.
ProjectiveGeneralUnitaryGroup(arguments)
PGU(arguments)
ProjectiveGeneralUnitaryGroup(n, q) : RngIntElt, RngIntElt -> GrpPerm, {@ ModTupFldElt @}
ProjectiveGeneralUnitaryGroup(n, K) : RngIntElt, FldFin -> GrpPerm, {@ ModTupFldElt @}
ProjectiveGeneralUnitaryGroup(V): ModTupRng -> GrpPerm, {@ ModTupFldElt @}
PGU(n, q) : RngIntElt, RngIntElt -> GrpPerm, {@ ModTupFldElt @}
PGU(n, K) : RngIntElt, FldFin -> GrpPerm, {@ ModTupFldElt @}
PGU(V): ModTupRng -> GrpPerm, {@ ModTupFldElt @}
Construct the projective general unitary group G = PGU(n, q) corresponding to the n-dimensional vector space V over the field K = GF(q2), where n ≥2 and q is a prime power. The function returns:
(a)
The group G;
(b)
An indexed set of the generators of the 1-dimensional subspaces of K(n), giving the correspondence between these vectors and the G-set of G.
ProjectiveSpecialUnitaryGroup(arguments)
PSU(arguments)
ProjectiveSpecialUnitaryGroup(n, q) : RngIntElt, RngIntElt -> GrpPerm, {@ ModTupFldElt @}
ProjectiveSpecialUnitaryGroup(n, K) : RngIntElt, FldFin -> GrpPerm, {@ ModTupFldElt @}
ProjectiveSpecialUnitaryGroup(V): ModTupRng -> GrpPerm, {@ ModTupFldElt @}
PSU(n, q) : RngIntElt, RngIntElt -> GrpPerm, {@ ModTupFldElt @}
PSU(n, K) : RngIntElt, FldFin -> GrpPerm, {@ ModTupFldElt @}
PSU(V): ModTupRng -> GrpPerm, {@ ModTupFldElt @}
Construct the projective special unitary group G = PSU(n, q) corresponding to the n-dimensional vector space V over the field K = GF(q2), where n ≥2 and q is a prime power. The function returns:
(a)
The group G;
(b)
An indexed set of the generators of the 1-dimensional subspaces of V, giving the correspondence between these vectors and the G-set of G.
ProjectiveGammaUnitaryGroup(arguments)
PGammaU(arguments)
ProjectiveGammaUnitaryGroup(n, q) : RngIntElt, RngIntElt -> GrpPerm, {@ ModTupFldElt @}
ProjectiveGammaUnitaryGroup(n, K) : RngIntElt, FldFin -> GrpPerm, {@ ModTupFldElt @}
ProjectiveGammaUnitaryGroup(V): ModTupRng -> GrpPerm, {@ ModTupFldElt @}
PGammaU(n, q) : RngIntElt, RngIntElt -> GrpPerm, {@ ModTupFldElt @}
PGammaU(n, K) : RngIntElt, FldFin -> GrpPerm, {@ ModTupFldElt @}
PGammaU(V): ModTupRng -> GrpPerm, {@ ModTupFldElt @}
Construct an automorphism group G = PGammaU(n, q) of the projective general unitary group B = PGU(n, q), by adding the field automorphisms of GF(q2) to B. The permutation action corresponds to the natural action on 1-dimensional subspaces of the n-dimensional vector space V over the field K = GF(q2), where n ≥2 and q is a prime power. The function returns:
(a)
The group G;
(b)
An indexed set giving the correspondence between the points and the G-set of G.
ProjectiveSigmaUnitaryGroup(arguments)
PSigmaU(arguments)
ProjectiveSigmaUnitaryGroup(n, q) : RngIntElt, RngIntElt -> GrpPerm, {@ ModTupFldElt @}
ProjectiveSigmaUnitaryGroup(n, K) : RngIntElt, FldFin -> GrpPerm, {@ ModTupFldElt @}
ProjectiveSigmaUnitaryGroup(V): ModTupRng -> GrpPerm, {@ ModTupFldElt @}
PSigmaU(n, q) : RngIntElt, RngIntElt -> GrpPerm, {@ ModTupFldElt @}
PSigmaU(n, K) : RngIntElt, FldFin -> GrpPerm, {@ ModTupFldElt @}
PSigmaU(V): ModTupRng -> GrpPerm, {@ ModTupFldElt @}
Construct the automorphism group G = PSigmaU(n, q) of the projective special unitary group B = PSU(n, q), by adding the field automorphisms of GF(q2) to B. The permutation action corresponds to the natural action on 1-dimensional subspaces of the n-dimensional vector space V over the field K = GF(q2), where n ≥2 and q is a prime power. The function returns:
(a)
The group G;
(b)
An indexed set giving the correspondence between the points and the G-set of G.
ProjectiveSymplecticGroup(arguments)
PSp(arguments)
ProjectiveSymplecticGroup(n, q) : RngIntElt, RngIntElt -> GrpPerm, {@ ModTupFldElt @}
ProjectiveSymplecticGroup(n, K) : RngIntElt, FldFin -> GrpPerm, {@ ModTupFldElt @}
ProjectiveSymplecticGroup(V) : ModTupRng -> GrpPerm, {@ ModTupFldElt @}
PSp(n, q) : RngIntElt, RngIntElt -> GrpPerm, {@ ModTupFldElt @}
PSp(n, K) : RngIntElt, FldFin -> GrpPerm, {@ ModTupFldElt @}
PSp(V) : ModTupRng -> GrpPerm, {@ ModTupFldElt @}
Construct the projective symplectic group G = PSp(n, q), where K = GF(q), V is an n-dimensional vector space over K, and n is an even integer greater than or equal to 4. The function returns:
(a)
The group G;
(b)
An indexed set of the generators of the 1-dimensional subspaces of K(n), giving the correspondence between these vectors and the G-set of G.
ProjectiveSigmaSymplecticGroup(arguments)
PSigmaSp(arguments)
ProjectiveSigmaSymplecticGroup(n, q) : RngIntElt, RngIntElt -> GrpPerm, {@ ModTupFldElt @}
ProjectiveSigmaSymplecticGroup(n, K) : RngIntElt, FldFin -> GrpPerm, {@ ModTupFldElt @}
ProjectiveSigmaSymplecticGroup(V) : ModTupRng -> GrpPerm, {@ ModTupFldElt @}
PSigmaSp(n, q) : RngIntElt, RngIntElt -> GrpPerm, {@ ModTupFldElt @}
PSigmaSp(n, K) : RngIntElt, FldFin -> GrpPerm, {@ ModTupFldElt @}
PSigmaSp(V) : ModTupRng -> GrpPerm, {@ ModTupFldElt @}
Construct the group G = PSigmaSp(n, q) of the projective symplectic group PSp(n, q) extended by field automorphisms of K = GF(q), where V is an n-dimensional vector space over K, and n is an even integer greater than or equal to 4. The function returns:
(a)
The group G;
(b)
An indexed set giving the correspondence between the points and the G-set of G.
PGO(arguments)
ProjectiveGeneralOrthogonalGroup(n, q) : RngIntElt, RngIntElt -> GrpPerm, {@ ModTupFldElt @}
ProjectiveGeneralOrthogonalGroup(n, K) : RngIntElt, FldFin -> GrpPerm, {@ ModTupFldElt @}
ProjectiveGeneralOrthogonalGroup(V): ModTupRng -> GrpPerm, {@ ModTupFldElt @}
PGO(n, q) : RngIntElt, RngIntElt -> GrpPerm, {@ ModTupFldElt @}
PGO(n, K) : RngIntElt, FldFin -> GrpPerm, {@ ModTupFldElt @}
PGO(V): ModTupRng -> GrpPerm, {@ ModTupFldElt @}
Construct the projective general orthogonal group G = PGO(n, q), where K = GF(q), V is an n-dimensional vector space over K, and n is an odd integer greater than or equal to 3. The function returns:
(a)
The group G;
(b)
An indexed set of the generators of the 1-dimensional subspaces of K(n), giving the correspondence between these vectors and the G-set of G.
PGOPlus(arguments)
ProjectiveGeneralOrthogonalGroupPlus(n, q) : RngIntElt, RngIntElt -> GrpPerm, {@ ModTupFldElt @}
ProjectiveGeneralOrthogonalGroupPlus(n, K) : RngIntElt, FldFin -> GrpPerm, {@ ModTupFldElt @}
ProjectiveGeneralOrthogonalGroupPlus(V): ModTupRng -> GrpPerm, {@ ModTupFldElt @}
PGOPlus(n, q) : RngIntElt, RngIntElt -> GrpPerm, {@ ModTupFldElt @}
PGOPlus(n, K) : RngIntElt, FldFin -> GrpPerm, {@ ModTupFldElt @}
PGOPlus(V): ModTupRng -> GrpPerm, {@ ModTupFldElt @}
Construct the projective general orthogonal group G = PGO^ + (n, q), where K = GF(q), V is an n-dimensional vector space over K, and n is an even integer greater than or equal to 2. The function returns:
(a)
The group G;
(b)
An indexed set of the generators of the 1-dimensional subspaces of K(n), giving the correspondence between these vectors and the G-set of G.
PGOMinus(arguments)
ProjectiveGeneralOrthogonalGroupMinus(n, q) : RngIntElt, RngIntElt -> GrpPerm, {@ ModTupFldElt @}
ProjectiveGeneralOrthogonalGroupMinus(n, K) : RngIntElt, FldFin -> GrpPerm, {@ ModTupFldElt @}
ProjectiveGeneralOrthogonalGroupMinus(V): ModTupRng -> GrpPerm, {@ ModTupFldElt @}
PGOMinus(n, q) : RngIntElt, RngIntElt -> GrpPerm, {@ ModTupFldElt @}
PGOMinus(n, K) : RngIntElt, FldFin -> GrpPerm, {@ ModTupFldElt @}
PGOMinus(V): ModTupRng -> GrpPerm, {@ ModTupFldElt @}
Construct the projective general orthogonal group G = PGO^ - (n, q), where K = GF(q), V is an n-dimensional vector space over K, and n is an even integer greater than or equal to 2. The function returns:
(a)
The group G;
(b)
An indexed set of the generators of the 1-dimensional subspaces of K(n), giving the correspondence between these vectors and the G-set of G.
PSO(arguments)
ProjectiveSpecialOrthogonalGroup(n, q) : RngIntElt, RngIntElt -> GrpPerm, {@ ModTupFldElt @}
ProjectiveSpecialOrthogonalGroup(n, K) : RngIntElt, FldFin -> GrpPerm, {@ ModTupFldElt @}
ProjectiveSpecialOrthogonalGroup(V): ModTupRng -> GrpPerm, {@ ModTupFldElt @}
PSO(n, q) : RngIntElt, RngIntElt -> GrpPerm, {@ ModTupFldElt @}
PSO(n, K) : RngIntElt, FldFin -> GrpPerm, {@ ModTupFldElt @}
PSO(V): ModTupRng -> GrpPerm, {@ ModTupFldElt @}
Construct the projective special orthogonal group G = PSO(n, q), where K = GF(q), V is an n-dimensional vector space over K, and n is an odd integer greater than or equal to 3. The function returns:
(a)
The group G;
(b)
An indexed set of the generators of the 1-dimensional subspaces of K(n), giving the correspondence between these vectors and the G-set of G.
PSOPlus(arguments)
ProjectiveSpecialOrthogonalGroupPlus(n, q) : RngIntElt, RngIntElt -> GrpPerm, {@ ModTupFldElt @}
ProjectiveSpecialOrthogonalGroupPlus(n, K) : RngIntElt, FldFin -> GrpPerm, {@ ModTupFldElt @}
ProjectiveSpecialOrthogonalGroupPlus(V): ModTupRng -> GrpPerm, {@ ModTupFldElt @}
PSOPlus(n, q) : RngIntElt, RngIntElt -> GrpPerm, {@ ModTupFldElt @}
PSOPlus(n, K) : RngIntElt, FldFin -> GrpPerm, {@ ModTupFldElt @}
PSOPlus(V): ModTupRng -> GrpPerm, {@ ModTupFldElt @}
Construct the projective special orthogonal group G = PSO^ + (n, q), where K = GF(q), V is an n-dimensional vector space over K, and n is an even integer greater than or equal to 2. The function returns:
(a)
The group G;
(b)
An indexed set of the generators of the 1-dimensional subspaces of K(n), giving the correspondence between these vectors and the G-set of G.
PSOMinus(arguments)
ProjectiveSpecialOrthogonalGroupMinus(n, q) : RngIntElt, RngIntElt -> GrpPerm, {@ ModTupFldElt @}
ProjectiveSpecialOrthogonalGroupMinus(n, K) : RngIntElt, FldFin -> GrpPerm, {@ ModTupFldElt @}
ProjectiveSpecialOrthogonalGroupMinus(V): ModTupRng -> GrpPerm, {@ ModTupFldElt @}
PSOMinus(n, q) : RngIntElt, RngIntElt -> GrpPerm, {@ ModTupFldElt @}
PSOMinus(n, K) : RngIntElt, FldFin -> GrpPerm, {@ ModTupFldElt @}
PSOMinus(V): ModTupRng -> GrpPerm, {@ ModTupFldElt @}
Construct the projective general orthogonal group G = PSO^ - (n, q), where K = GF(q), V is an n-dimensional vector space over K, and n is an even integer greater than or equal to 2. The function returns:
(a)
The group G;
(b)
An indexed set of the generators of the 1-dimensional subspaces of K(n), giving the correspondence between these vectors and the G-set of G.
ProjectiveOmega(arguments)
POmega(arguments)
ProjectiveOmega(n, q) : RngIntElt, RngIntElt -> GrpPerm, {@ ModTupFldElt @}
ProjectiveOmega(n, K) : RngIntElt, FldFin -> GrpPerm, {@ ModTupFldElt @}
ProjectiveOmega(V): ModTupRng -> GrpPerm, {@ ModTupFldElt @}
POmega(n, q) : RngIntElt, RngIntElt -> GrpPerm, {@ ModTupFldElt @}
POmega(n, K) : RngIntElt, FldFin -> GrpPerm, {@ ModTupFldElt @}
POmega(V): ModTupRng -> GrpPerm, {@ ModTupFldElt @}
Construct the projective orthogonal group G = POmega(n, q), where K = GF(q), V is an n-dimensional vector space over K, and n is an odd integer greater than or equal to 3. The function returns:
(a)
The group G;
(b)
An indexed set of the generators of the 1-dimensional subspaces of K(n), giving the correspondence between these vectors and the G-set of G.
ProjectiveOmegaPlus(arguments)
POmegaPlus(arguments)
ProjectiveOmegaPlus(n, q) : RngIntElt, RngIntElt -> GrpPerm, {@ ModTupFldElt @}
ProjectiveOmegaPlus(n, K) : RngIntElt, FldFin -> GrpPerm, {@ ModTupFldElt @}
ProjectiveOmegaPlus(V): ModTupRng -> GrpPerm, {@ ModTupFldElt @}
POmegaPlus(n, q) : RngIntElt, RngIntElt -> GrpPerm, {@ ModTupFldElt @}
POmegaPlus(n, K) : RngIntElt, FldFin -> GrpPerm, {@ ModTupFldElt @}
POmegaPlus(V): ModTupRng -> GrpPerm, {@ ModTupFldElt @}
Construct the projective orthogonal group G = POmega(n, q), where K = GF(q), V is an n-dimensional vector space over K, and n is an even integer greater than or equal to 2. The function returns:
(a)
The group G;
(b)
An indexed set of the generators of the 1-dimensional subspaces of K(n), giving the correspondence between these vectors and the G-set of G.
ProjectiveOmegaMinus(arguments)
POmegaMinus(arguments)
ProjectiveOmegaMinus(n, q) : RngIntElt, RngIntElt -> GrpPerm, {@ ModTupFldElt @}
ProjectiveOmegaMinus(n, K) : RngIntElt, FldFin -> GrpPerm, {@ ModTupFldElt @}
ProjectiveOmegaMinus(V): ModTupRng -> GrpPerm, {@ ModTupFldElt @}
POmegaMinus(n, q) : RngIntElt, RngIntElt -> GrpPerm, {@ ModTupFldElt @}
POmegaMinus(n, K) : RngIntElt, FldFin -> GrpPerm, {@ ModTupFldElt @}
POmegaMinus(V): ModTupRng -> GrpPerm, {@ ModTupFldElt @}
Construct the projective orthogonal group G = POmega(n, q), where K = GF(q), V is an n-dimensional vector space over K, and n is an even integer greater than or equal to 2. The function returns:
(a)
The group G;
(b)
An indexed set of the generators of the 1-dimensional subspaces of K(n), giving the correspondence between these vectors and the G-set of G.
ProjectiveSuzukiGroup(arguments)
PSz(arguments)
ProjectiveSuzukiGroup(q) : RngIntElt -> GrpPerm, {@ ModTupFldElt @}
ProjectiveSuzukiGroup(K) : FldFin -> GrpPerm, {@ ModTupFldElt @}
ProjectiveSuzukiGroup(V) : ModTupRng -> GrpPerm, {@ ModTupFldElt @}
PSz(q): RngIntElt -> GrpPerm, {@ ModTupFldElt @}
PSz(K) : FldFin -> GrpPerm, {@ ModTupFldElt @}
PSz(V) : ModTupRng -> GrpPerm, {@ ModTupFldElt @}
Construct the permutation representation G = PSz(q) of the Suzuki simple group Sz(q), given by its action on projective points, where q is of the form 22n + 1. If K is given, its cardinality is q. If V is given, it must be 4-dimensional, and over K. The function returns:
(a)
The group G;
(b)
An indexed set of the generators of the 1-dimensional subspaces of K(n), giving the correspondence between these vectors and the G-set of G.
AffineGroup(M) : GrpMat[FldFin] -> GrpPerm, {@ ModTupFldElt @}
Given a matrix group of degree d over a finite field F, construct the semidirect product V:M, where V=Fd is the natural M-module. The result G is a standard permutation group of degree |V| = |F|d, where the second return value gives the correspondence between the elements of V and the standard G-set.
V2.28, 28 February 2025