About
Calculator
Ordering
FAQ
Download
Documentation
Citations
Conferences
Links
Contact
CAG
Login
Magma
Computer • algebra
Documentation
Contents
Index (i)
Search
IsIndecomposable
IsIndecomposable(A) : GalRep -> BoolElt
IsIndecomposable(G) : GrpPC -> BoolElt
IsIndecomposable(M, B) : ModBrdt, RngIntElt -> BoolElt
IsIndecomposable(t) : TenSpcElt -> BoolElt
IsIndefinite
IsIndefinite(A) : AlgQuat -> BoolElt
IsDefinite(A) : AlgQuat -> BoolElt
IsIndependent
IsIndependent(Q) : [ AlgGen ] -> BoolElt
IsIndependent(Q) : [ AlgLieElt ] -> BoolElt
IsIndependent(Q) : [ ModTupFldElt ] -> BoolElt
IsIndependent(S) : { ModTupFldElt } -> BoolElt
IsIndivisibleRoot
IsIndivisibleRoot(R, r) : RootStr, RngIntElt -> BoolElt
IsIndivisibleRoot(R, r) : RootSys, RngIntElt -> BoolElt
IsInduced
IsInduced(AmodB) : GGrp -> BoolElt, GGrp, GGrp, Map, Map
IsInert
IsInert(P) : RngFunOrdIdl -> BoolElt
IsInert(P, O) : RngFunOrdIdl, RngFunOrd -> BoolElt
IsInert(P) : RngOrdIdl -> BoolElt
IsInert(P, O) : RngOrdIdl, RngOrd -> BoolElt
IsInertial
IsInertial(f) : RngUPolElt -> BoolElt
IsInertial(f) : RngUPolXPadElt -> BoolElt
IsInfinite
IsInfinite(G) : GrpAb -> BoolElt
IsInfinite(p) : PlcNumElt -> BoolElt, RngIntElt
IsInfinite(p) : PlcNumElt -> BoolElt, RngIntElt
IsInfinite(z) : SpcHypElt -> BoolElt
IsInfiniteFPGroup
IsInfiniteFPGroup(G : parameters) : GrpFP -> BoolElt
IsInflectionPoint
IsFlex(C, p) : Sch,Pt -> BoolElt,RngIntElt
IsInflectionPoint(p) : Pt -> BoolElt,RngIntElt
IsInformationSet
IsInformationSet(C, I) : CodeLinRng, [RngIntElt] -> BoolElt, BoolElt
IsInImage
IsInImage(f, p) : Map, RngMPolElt -> [ BoolElt ]
IsInInterior
IsInInterior(v,C) : TorLatElt,TorCon -> BoolElt
IsInjective
IsInjective(f) : MapChn -> BoolElt
IsInjective(phi) : MapModAbVar -> BoolElt
IsInjective(M) : ModAlg -> BoolElt, SeqEnum
IsInjective(a) : ModMatRngElt -> BoolElt
IsInjective(f) : ModMPolHom -> BoolElt
IsInKummerRepresentation
IsInKummerRepresentation(K) : FldFun -> BoolElt, FldFunElt
IsInner
IsInner(f) : GrpAutoElt -> BoolElt, GrpElt
IsInner(R) : RootDtm -> BoolElt
IsInRadical
IsInRadical(f, I) : RngMPolElt, RngMPol -> BoolElt
IsInRootSpace
IsCorootSpace(v) : ModTupFldElt -> BoolElt
IsInRootSpace(v) : ModTupFldElt -> BoolElt
IsInRootSpace(R,v) : RootDtm, ModTupFldElt -> BoolElt
IsInSecantVariety
IsInSecantVariety(X,P) : Sch,Pt -> BoolElt
IsInSmallGroupDatabase
IsInSmallGroupDatabase(o) : RngIntElt -> BoolElt
IsInSmallModularCurveDatabase
IsInSmallModularCurveDatabase(N) : RngIntElt -> Boolelt
IsInSupport
IsInSupport(v,F) : TorLatElt,TorFan -> BoolElt,RngIntElt
IsInt
IsInt(x, B, S) : RngElt, RngIntElt, GaloisData -> BoolElt, RngElt
IsInTangentVariety
IsInTangentVariety(X,P) : Sch,Pt -> BoolElt
IsInteger
IsInteger(phi) : MapModAbVar -> BoolElt, RngIntElt
IsIntegral
IsIntegral(x) : AlgEtQElt -> BoolElt
IsIntegral(I) : AlgEtQIdl -> BoolElt
IsIntegral(C) : CrvHyp -> BoolElt
IsIntegral(D) : DivSchElt -> BoolElt
IsIntegral(a) : FldAlgElt -> BoolElt
IsIntegral(a) : FldNumElt -> BoolElt, RngIntElt
IsIntegral(q) : FldRatElt -> BoolElt
IsIntegral(c) : FldReElt -> BoolElt
IsIntegral(L) : Lat -> BoolElt
IsIntegral(L) : LatNF -> BoolElt
IsIntegral(I) : OMIdl -> BoolElt
IsIntegral(I) : OMIdl -> BoolElt
IsIntegral(P) : PtEll -> BoolElt
IsIntegral(I) : RngFunOrdIdl -> BoolElt
IsIntegral(n) : RngIntElt -> BoolElt
IsIntegral(a) : RngLocAElt -> BoolElt, SeqEnum
IsIntegral(I) : RngOrdFracIdl -> BoolElt
IsIntegral(x) : RngPadElt -> BoolElt
IsIntegral(x) : RngXPadElt -> BoolElt
IsIntegral(v) : TorLatElt -> BoolElt
IsIntegralDomain
IsIntegralDomain(R): Rng -> BoolElt
IsDomain(R) : Rng -> BoolElt
IsIntegrallyClosed
IsIntegrallyClosed(P) : TorPol -> BoolElt
IsIntegralModel
IsIntegralModel(E) : CrvEll -> BoolElt
IsIntegralModel(E, P) : CrvEll, RngOrdIdl -> BoolElt
IsInterior
IsInterior(N,p) : NwtnPgon,Tup -> BoolElt
IsIntersection
IsIntersection(C,D,p) : Sch,Sch,Pt -> BoolElt
IsIntrinsic
IsIntrinsic(S) : MonStgElt -> Bool, Intrinsic
State_IsIntrinsic (Example H1E24)
State_IsIntrinsic (Example H1E25)
IsInTwistedForm
IsInTwistedForm(x, c) : GrpLieElt, OneCoC -> BoolElt
Contents
Index (i)
Search
V2.29, 21 October 2025