Elements

x1 + x2 : AlgEtQElt, AlgEtQElt -> AlgEtQElt
x1 + x2 : Any, AlgEtQElt -> AlgEtQElt
x1 + x2 : AlgEtQElt, Any -> AlgEtQElt
- x : AlgEtQElt -> AlgEtQElt
x1 - x2 : AlgEtQElt, AlgEtQElt -> AlgEtQElt
x1 - x2 : Any, AlgEtQElt -> AlgEtQElt
x1 - x2 : AlgEtQElt, Any -> AlgEtQElt
x1 * x2 : AlgEtQElt, AlgEtQElt -> AlgEtQElt
x1 * x2 : Any, AlgEtQElt -> AlgEtQElt
x1 * x2 : AlgEtQElt, Any -> AlgEtQElt
x ^ n : AlgEtQElt, RngIntElt -> AlgEtQElt
x1 / x2 : AlgEtQElt, AlgEtQElt -> AlgEtQElt
x1 / x2 : Any, AlgEtQElt -> AlgEtQElt
x1 / x2 : AlgEtQElt, Any -> AlgEtQElt
Parent(x) : AlgEtQElt -> AlgEtQ
Algebra(x) : AlgEtQElt -> AlgEtQ
Returns the algebra to which the element x belongs to.
Components(x) : AlgEtQElt -> SeqEnum
Given an element x, returns its components, which are elements of number fields.
AbsoluteCoordinates(x) : AlgEtQElt -> SeqEnum
Given an element x, returns the coordinates relative to the absolute basis, which are elements of the prime rational field.
IsCoercible(A, x) : AlgEtQ, Any -> BoolElt, AlgEtQElt
Return whether the element x is coercible into the algebra A and the result of the coercion if so.
A ! x : AlgEtQ, Any) -> AlgEtQElt
Coerce x into the algebra A.
One(A) : AlgEtQ -> AlgEtQElt
The multiplicative neutral element of the algebra A.
Zero(A) : AlgEtQ -> AlgEtQElt
The additive neutral element of the algebra A.
IsUnit(x) : AlgEtQElt -> BoolElt
Returns whether the element x is a unit in its algebra A.
IsZeroDivisor(x) : AlgEtQElt -> BoolElt
Returns whether the algebra element x is a not unit in its algebra A.
Random(A, bd) : AlgEtQ, RngIntElt -> AlgEtQElt
Returns a random element of the algebra A. The coefficients are bounded by the positive integer bd.
Random(A) : AlgEtQ -> AlgEtQElt
    bd: RngIntElt                       Default: 3
Returns a random element of the algebra A. The coefficients are bounded by the parameter bd (default 3).
RandomUnit(A, bd) : AlgEtQ, RngIntElt -> AlgEtQElt
Returns a random unit of the algebra A. The coefficients are bounded by the positive integer bd.
x1 eq x2 : AlgEtQElt, AlgEtQElt -> BoolElt
x1 eq x2 : RngIntElt, AlgEtQElt -> BoolElt
x1 eq x2 : AlgEtQElt, RngIntElt -> BoolElt
x1 eq x2 : FldRatElt, AlgEtQElt -> BoolElt
x1 eq x2 : AlgEtQElt, FldRatElt -> BoolElt
Returns whether the elements x1 and x2 are equal.
Inverse(x) : AlgEtQElt -> AlgEtQElt
The multiplicative inverse of the algebra element x.
&+ seq : SeqEnum[AlgEtQElt] -> AlgEtQElt
Given a sequence of AlgEtQElt returns the sum of the entries.
&* seq : SeqEnum[AlgEtQElt] -> AlgEtQElt
Given a sequence of AlgEtQElt returns the product of the entries.
SumOfProducts(as, bs) : SeqEnum[AlgEtQElt], SeqEnum[AlgEtQElt] -> AlgEtQElt
SumOfProducts(as, bs) : SeqEnum[RngIntElt], SeqEnum[AlgEtQElt] -> AlgEtQElt
SumOfProducts(as, bs) : SeqEnum[AlgEtQElt], SeqEnum[RngIntElt] -> AlgEtQElt
SumOfProducts(as, bs) : SeqEnum[FldRatElt], SeqEnum[AlgEtQElt] -> AlgEtQElt
SumOfProducts(as, bs) : SeqEnum[AlgEtQElt], SeqEnum[FldRatElt] -> AlgEtQElt
Given sequences as and bs containing elements of algebras, of equal length, returns &+[as[i]*bs[i] : i in [1..#as]]. This intrinsic is included to obviate to the loss of efficiency due to the many calls of IsCoercible.
MinimalPolynomial(x) : AlgEtQElt -> RngUPolElt
Returns the minimal polynomial over the common base ring of the number fields defining the algebra A of the element x.
MinimalPolynomial(x, F) : AlgEtQElt, Rng -> RngUPolElt
Returns the minimal polynomial over the ring F of the element x.
AbsoluteMinimalPolynomial(x) : AlgEtQElt -> RngUPolElt
Returns the minimal polynommial over the prime field of the element x or an algebra.
IsIntegral(x) : AlgEtQElt -> BoolElt
Returns whether the element x of an algebra is integral (over the integers).
Evaluate(f, a) : RngUPolElt, AlgEtQElt -> AlgEtQElt
Evaluate the polynomial f at the algebra element a.
PrimitiveElement(A) : AlgEtQ -> AlgEtQElt
Returns the primitive element of the étale algebra A. Note that A has a primitive element only if it is the product of distinct number fields.
PowerBasis(A) : AlgEtQ -> SeqEnum[AlgEtQElt]
Returns the power basis of the étale algebra A, consisting of powers of the primitive element of A.
Basis(A) : AlgEtQ -> SeqEnum
Returns a basis of the algebra A over the common base field.
AbsoluteBasis(A) : AlgEtQ -> SeqEnum
Returns a basis of the algebra A over the prime field.
AbsoluteCoordinates(seq, basis) : SeqEnum[AlgEtQElt], SeqEnum[AlgEtQElt] -> SeqEnum
Given a sequence of elements and a basis over the PrimeField returns a sequence whose entries are the coordinates in the PrimeField with respect to the given basis.
OrthogonalIdempotents(A) : AlgEtQ -> SeqEnum
Returns the orthogonal idempotent element of the étale algebra A.
Idempotents(A) : AlgEtQ -> SeqEnum
Returns the idempotent element of the étale algebra A.
V2.29, 21 October 2025