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1 Introduction

This document provides a terse summary of the new features released as part of Magma
versions V2.26 (April 2021).

A small number of new features were exported in patch releases prior to the main release
of V2.26 in April 2021 and these are also listed here for completeness. Only significant
bugfixes are noted here – for a more complete list of bugfixes the reader should consult the
patch release change log for V2.25-x.

2 Highlights

Arithmetic Geometry

• Hyperelliptic Curves

The functionality for hyperelliptic curves and (smooth) plane quartic curves has been
extended by R. Lercier, C. Ritzenthaler, and J. Sijsling. For these classes of curves
C, the following new features for hyperelliptic curves have been included:

– The reconstruction of hyperelliptic curves of genus 2 (respectively 3) from their
Igusa invariants (respectively Shioda invariants) has been optimized. The use
of separating invariants extends the reconstruction algorithms in genus 3 to all
characteristics except 5. Moreover, for all automorphism groups, the resulting
reconstructed curves are now returned over the base field whenever possible,
and they have small coefficients when the base field is a number field.

– Given two hyperelliptic curves C1 and C2 over a common base field, one can
effectively check for the existence of isomorphisms C1 → C2 between them, both
over the base field and over its algebraic closure. Moreover, the isomorphisms
can be computed effectively.

– Similarly, the automorphism group of a given curve C (over the base field and
over the algebraic closure) can be computed. The automorphism group can be
obtained as a permutation group.

– Under some mild conditions on the characteristic, the twists of a given curve
C over a finite field, that is, the isomorphism classes of curves that become
isomorphic to C over the algebraic closure of the base field, can be calculated
effectively.
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• Plane Quartic Curves

Some functionality for (smooth) plane quartic curves has been developed by R.
Lercier, C. Ritzenthaler, and J. Sijsling similar to that which they have developed
for hyperelliptic curves.

– The Dixmier–Ohno invariants for smooth plane quartic curves (of genus 3) have
been implemented, as well as an optimized calculation of their discriminant.

– An efficient algorithm for reconstructing a smooth plane quartic curve from its
Dixmier–Ohno invariants is provided.

– Given two plane quartic curves C1 and C2 over a finite field or the rationals, the
existence of isomorphisms C1 → C2 can be determined, both over the base field
and over its algebraic closure. Moreover, the isomorphisms can be effectively
computed.

– The automorphism group of a given curve C (either over the base field or over the
algebraic closure) can be computed. The automorphism group can be obtained
as a permutation group.

– The twists of a plane quartic curve over a finite field can be computed.

• Elliptic Curves Over Number Fields

– Given an order O of a number field K, the intrinsic EllipticCurveSearch

attempts to find those elliptic curves that have O as conductor. A number of
issues that emerged when K is a quartic field have been fixed.

Arithmetic Fields

• p-adic Rings

– A C version of Christopher Doris’s package for exact arithmetic in p-adic rings
and fields is included in Magma for the first time.

• Algebraic Number and Function Fields

– In 1999, J. Montes introduced a new computational representation, the OM rep-
resentation, for prime ideals in Dedekind domains. This approach for computing
with fractional ideals in Dedekind domains has been applied to ideal computa-
tions in both number fields and algebraic function fields. A Magma package
implementing the Montes approach for both number fields and function fields
has been developed by Jens-Dietrich Bauch.

Part of Bauch’s package was incorporated into Magma V2.25 and this has led
to dramatic speed-ups in the computation of maximal orders and in the decom-
position of primes in number fields and function fields.
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This release contains the OM representation functionality from Bauch’s pack-
age. This includes the machinery for ideals and divisors for both number fields
and function fields. In particular, this makes possible the construction of ideals
and divisors without the computation of maximal orders.

Basic Rings and Fields

• Univariate Polynomial Rings

– Polynomial factorization over finite fields has been greatly sped up when there
is a very large number of factors of equal degree.

– A number of additional speedups have been made which apply generally to the
von zur Gathen/Kaltofen/Shoup-based algorithm for polynomial factorization
over finite fields.

– The &* operator, when applied to univariate polynomials of the same degree,
has been greatly sped up.

– A parallel version of the Schoenhage-Strassen FFT algorithm for multiplication
of polynomials of high degree and with very large integer coefficients has been
developed and may be selected with SetParallelFFT.

• Multivariate Polynomial Rings

– A major new sparse representation has been developed for monomials of mul-
tivariate polynomial rings. As a result, several types of computations involv-
ing polynomials with many variables have been sped up and take less memory
(particularly when the monomials have very low degree). This includes basic
arithmetic, the evaluation of homomorphisms, and the computation of Gröbner
bases.

Coding Theory

• Linear Codes over Finite Fields

– POSIX threads and distributed computation are now available for the computa-
tion of the minimum weight of codewords. The speed-up factor is approximately
equal to the number of cores used.

– Similar parallelism is available for closely related computations such as the con-
struction of the set of minimum weight codewords.

– Both POSIX threads and distributed computation type parallelisation can now
be used for the computation of the weight distribution and weight enumerator
of a linear code. The speed-up factor is close to the number of cores used.
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Commutative Algebra

• Ideal Theory and Gröbner Bases

– The function GroebnerBasis when applied to an ideal or set/sequence of poly-
nomials now has a second return value D which gives the sequence of degrees
encountered in each step of the F4 algorithm (whether computing the easy GB
before a conversion, or a direct F4 computation), when that is non-trivial.

– The function EasyIdeal similarly now has a second return value D giving the
sequence of degrees encountered when computing the easy basis (the third return
value is now the isomorphism map which used to be the second return value).

– Major improvements have been made to the algorithm for computing the Hilbert
series or Hilbert polynomial of an ideal of a multivariate polynomial ring R,
particularly when there are a large number of variables in R.

– The algorithm for computing the dimension of an ideal of a multivariate ring
R and a corresponding maximally independent set has been greatly improved,
particularly when there are a large number of variables in R.

– The sparse case of the F4 algorithm for inputs defined over GF(2k) for 1 < k < 32
has been improved.

– The dense F4 algorithm in ‘HFE’ mode has been greatly improved when POSIX
threads are used. The 80-variable Patarin HFE Challenge 1 can now be solved
in 28 seconds on a 4-core 3.6GHz Intel Core i7-7700 processor.

• Invariant Theory

– Some very major improvements in speed and memory usage have been achieved
in the linear algebra method for computing the monomials of given degree for
an invariant ring (by use of sparse linear algebra where possible).

This makes possible the computation of properties such as the primary and
secondary invariants in the modular case for much larger invariant rings than
was previously possible.

For example, computing the primary invariants of the natural degree-5 repre-
sentation of SU5(2) (with coefficient ring GF(22)) is now about 40 times faster
than previously.
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Group Theory

• Classical Groups

– The algorithm for the conjugacy invariants of classical groups has been improved
and as a result there is a significant speed increase in computing the conjugacy
classes of classical groups in odd characteristics.

– Code from Eamonn O’Brien and Giovanni de Franceschi has been installed.
Their package computes the conjugacy classes, centralisers and conjugating el-
ements for all classical groups, including groups in characteristic 2.

– The intrinsic Classes (and hence its synonym ConjugacyClasses) has been
modified so that it uses the new new code when appropriate.

– The implementation of the orthogonal groups of minus type in even dimensions
(GO−(2n, q) and subgroups) has been changed. For several years, even though
the groups produced in different sessions of Magma were isomorphic, the gen-
erators were not necessarily the same. In order to address this problem the
original C code for the generators has been restored.

• Finite Groups

– The new function MinimalDegreePermutationRepresentation developed by
Derek Holt takes a finite group G (given as a permutation, matrix, abelian or
pc-presentation group) as input, and computes a faithful permutation represen-
tation of G of smallest possible degree. The representation and its image, which
is isomorphic to G, are returned.

This calculation can take a long time for some groups G, even when G has
faithful permutation representations of moderately small degree. There is an
optional parameter Accept, which can be set by the user to a positive integer
n, in which case the function will stop as soon as it has found some faithful
representation of degree at most n and output that. This can speed things up,
but of course the result is not guaranteed to have the smallest possible degree
in that case.

The function works quickly on almost all of the groups in the small groups
library of groups of order less than 2,000, but it can be slow on a few such
examples, particularly large p-groups. These might be suitable candidates for
effective use of the Accept parameter.

It generally performs well with matrix groups, provided that a reasonably small
degree faithful permutation representation exists. For example, for the group
SpinPlus(8,3), it finds the optimal representation of degree 4,320 reasonably
quickly (about 20 seconds), whereas for SpinMinus(8,3), it takes longer (about
180 seconds) to find the representation of degree 183,680 and prove that it has
minimal degree.
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Although the new function cannot be used directly on a finitely presented group
F , the user can attempt to find an isomorphic permutation group using coset
enumeration on F and then apply the minimal degree function.

– A database containing the 403,874 simple groups of order less than 1020 has been
installed. The simple groups are arranged in increasing group order thereby
making it straightforward for the user to loop though them. The groups can
be accessed either by specifying their standard name or their position in the
database. While Magma contains tools that allow the user to construct any
finite simple group the purpose of this feature is to make it easier for users to
access (the smaller) simple groups and to loop through a series of them.

• Matrix Groups

– A new update of the CompositionTree package is included in this release. The
handling of representations of SL(2, q) inside CompositionTree was revised to
ensure that all possible reductions are performed inside CompositionTree before
calling RecogniseSL2; this improves performance for reducible representations
of these groups. The intrinsic CompositionTreeVerify was revised so that all
generators of the input group G are verified to lie in the group H described by
the data structure constructed by CompositionTree. This additional check is
needed to ensure that H = G, rather than being just a subgroup of G.

• Soluble Groups

– A package known as TameGenus was constructed by Peter Brooksbank, Josh
Maglione, and James Wilson as an application of their Multilinear Algebra
package. It includes polynomial-time algorithms for deciding isomorphism, con-
structing automorphism groups, and building canonical labels for a class of finite
p-groups of nilpotency class 2 and exponent p. This class includes all d-generator
groups of order pd+2, exponent p, and class 2.

6



Integral Lattices

• Enumeration in Lattices

– Both POSIX threads and distributed computation type parallelisation are now
available for the enumeration of shortest vectors. The speed-up factor achieved
is approximately equal to the number of cores used.

– The parallelisation of short vector enumeration automatically parallelises the
computation of lattice minimum, packing radius, Hermite constant, centre den-
sity, density of the lattice and other computations that involve this type of
enumeration.

– Both POSIX threads and distributed computation type parallelisation are now
available for the enumeration of closest vectors. The speed-up factor achieved
is close to the number of cores used.

– The parallelisation of closest vectors enumeration automatically parallelises com-
putations that involve this type of enumeration.

Linear Algebra and Module Theory

• Linear Algebra over Finite Fields

– The algorithms to compute the semilinear dual, the twisted dual and the twisted
semilinear dual of a G-module have been updated and as a result there is a
considerable speed improvement.

– The optimal Wilson algorithm for the Gram-Schmidt reduction of the matrix
of a reflexive bilinear or sesquilinear form to (almost) diagonal form has been
installed.

• Multilinear Algebra

– The calculation of invariant bilinear forms is no longer restricted to finite fields.

– An upgrade of the package for Multilinear Algebra developed and maintained by
Peter Brooksbank, Josh Maglione and James Wilson has been installed. In this
upgrade some functions have been optimized and a number of bugs are fixed.
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Parallelism

• Several new parallelism facilities are included in Magma V2.26 which are explained in
detailed in a new chapter of the Handbook entitled ‘Parallelism’ (Chapter 5). These
include the following:

– The support for user-implemented distributed parallelism has been greatly ex-
panded.

– POSIX threads and distributed type parallelisation are now available for the
enumeration of short vectors and related properties.

– POSIX threads and distributed type parallelisation are now available for the
enumeration of close vectors.

– The dense F4 algorithm in ‘HFE’ mode has been greatly improved when POSIX
threads are used. The 80-variable Patarin HFE Challenge 1 can now be solved
in 28 seconds on a 4-core 3.6GHz Intel Core i7-7700 processor.

– Multiple NVIDIA GPUs are now supported for matrix multiplication over very
small finite fields.

– POSIX threads and distributed type parallelisation are provided for the com-
putation of the minimum weight and weight distribution of a linear code.

Representation Theory

• KG-Modules

– There is a new function AbsolutelyIrreducibleModules(G) for a finite group
G to compute all the non-isomorphic absolutely irreducible G-modules in char-
acteristic zero, which are written over Q or a number field of minimal degree.
As an example, the 72 absolutely irreducible G-modules for the group PSL(3, 8)
are computed in about 2 hours, including dimension-511 modules written over
a number field of degree 18.

– The function IrreducibleModules(G, K) now supports the cases when K is
a quadratic field or a simple number field and returns the non-isomorphic irre-
ducible K[G]-modules of a finite group G.

– The function GModule(chi) to compute an individual absolutely-irreducible G-
module for an absolutely irreducible character chi has been greatly improved
for a wide class of inputs.

– The functions that construct all irreducible and absolutely irreducible KG-
modules, where K is a finite field and G is a non-soluble group, have now
been extended to include matrix groups over all types of ring. Formerly, it was
essentially restricted to permutation groups.
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– The functions that construct all irreducible and absolutely irreducible KG-
modules modules, where K is a finite field and G is a soluble group, have been
made much more reliable by using a new implementation of the Schur algorithm.
(While the former implementation of the Schur algorithm is more general and
faster for large groups, it has problems that cause it to fail sometimes).

System

• NVIDIA GPU support

– New functions to control usage of multiple NVIDIA GPUs when present.

– Multiple NVIDIA GPUs are now supported for matrix multiplication over very
small finite fields.
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3 Documentation

New Handbook Chapters:

– Parallelism

– Plane Quartics: Invariants and Isomorphisms

4 Language and System Features

New Features:

– New functions SetNGPUs, GetNGPUs, SetGPUDevices, SetGPUDevice to control usage of multiple
NVIDIA GPUs when present.

– When Magma is started from the shell, the command line option -t N may now be used to set the
number of POSIX threads to N at startup, where N is a positive integer (so this is equivalent to
calling SetNthreads(N); after Magma has started).
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5 Aggregates and Mappings

Bug Fixes:

– Map application has been fixed so that automatic coercion into the domain is avoided when the
input is a sequence of elements in the domain itself. (V2.25-5)

6 Algebraic Geometry

6.1 Schemes

New Features:

– It is now possible to construct a map between a projective scheme and an affine scheme with one
of the defining polynomials being zero. (V2.25-5)

Bug Fixes:

– A bug in the intrinsic Reduction which computes the reduction of a variety X over a number field
K at a place or a prime ideal of K has been fixed. Reported with fix by Raymond van Bommel.

– An error in PointSearch which caused a crash when applied to an affine scheme has been fixed.

– A crash in IsInvertible applied to a map between schemes when the parameter Maximal is set to
true has been fixed. (V2.25-6)

– An error in the Faugere algorithm which caused the intrinsic PointsOverSplittingField (and
others) when applied to a scheme to crash has been fixed.

6.2 Algebraic Surfaces

Bug Fixes:

– A bug in the intrinsic DesingulariseSurfaceByBlowUp has been fixed.

6.3 Toric Varieties

Changes:

– Maps involving toric varieties have been improved. (V2.25-6)
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7 Arithmetic Geometry

7.1 Rational Curves and Conics

Bug Fixes:

– An occasional crash in HasRationalPoint for conics defined over a number field has been fixed.

7.2 Elliptic Curves over the Rational Field

Bug Fixes:

– An error in the intrinsic MordellWeilGroup caused by a recent change has been fixed.

7.3 Elliptic Curves over Number Fields

Bug Fixes:

– A number of bugs that caused the intrinsic EllipticCurveSearch to crash sometimes when the
conductor argument is an order in a quartic number field have been fixed.

7.4 Hyperelliptic Curves

In this subsection new intrinsics for hyperelliptic curves are summarised. These were made
available in the 2020 version of a package for hyperelliptic curves being developed by R.
Lercier, C. Ritzenthaler, and J. Sijsling.

7.4.1 Invariants

New Features:

– IgusaAlgebraicRelations: The generators of the ideal of relations between a number of Igusa
invariants.

– IgusaInvariantsEqual: Determine whether the Igusa Invariants of two genus 2 hyperelliptic curves
or of two binary forms of degree 8 are equivalent.

– DiscriminantFromIgusaInvariants: The discriminant of a genus 2 hyperelliptic curve given its
Igusa invariants.

– HyperellipticCurveFromIgusaInvariants: Given the Igusa invariants of a hyperelliptic curve,
the curve and its automorphism group are returned.
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7.4.2 Automorphisms and Isomorphisms

New Features:

– IsIsomorphicHyperellipticCurves: Given two hyperelliptic curves C1 and C2, return true if
they are isomorphic and false otherwise.

– IsomorphismsOfHyperellipticCurves: Given two hyperelliptic curves C1 and C2, return the iso-
morphisms between C1 and C2.

– AutomorphismsOfHyperellipticCurve: The automorphisms of the given hyperelliptic curve re-
turned as a list.

– AutomorphismGroupOfHyperellipticCurve: The automorphisms of the given hyperelliptic curve
returned as a group.

– GeometricAutomorphismGroupFromShiodaInvariants: Given Shioda invariants, that is, invariants
for a genus 3 hyperelliptic curve C, the intrinsic returns the automorphism group of C.

7.4.3 Twists

New Features:

– Twists: Given an elliptic curve, hyperelliptic curve or plane quartic curve, this intrinsic returns the
twists of the curve.

– TwistsOfHyperellipticPolynomials: Let C be the hyperelliptic curve defined by y2 = f(x).
Given f as argument, this intrinsic returns the twisted hyperelliptic polynomials and their geometric
reduced automorphism groups.

– TwistsOfHyperellipticPolynomials: Let C be the hyperelliptic curve defined by y2 + h(x)y =
f(x). Given [f, g] as argument, this intrinsic returns the twisted hyperelliptic polynomials and their
geometric reduced automorphism groups.

– TwistedHyperellipticPolynomialsFromShiodaInvariants: Let C be the hyperelliptic curve de-
fined by y2 = f(x) and let SI be the Shioda invariants for C. Given SI as argument this intrinsic
returns the twisted hyperelliptic polynomials and their automorphism groups.

– TwistedHyperellipticPolynomialsFromShiodaInvariants: Let C be the hyperelliptic curve de-
fined by y2 + h(x) ∗ y = f(x) and let SI be the Shioda invariants for C. Given SI as argument this
intrinsic returns the twisted hyperelliptic polynomials and their automorphism groups.

– TwistsFromShiodaInvariants: Given the Shioda invariants of a hyperelliptic curve C return the
associated twisted hyperelliptic curves and their automorphism groups.

– TwistsFromIgusaInvariants: Given the Igusa invariants of a hyperelliptic curve C return the
associated twisted hyperelliptic curves and their automorphism groups.

– TwistsFromG2Invariants: Given the Cardona-Quer-Nart-Pujolas invariants of a hyperelliptic curve
C of genus 2 return the associated twisted hyperelliptic curves and their automorphism groups.
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7.4.4 Reduced Isomorphisms and Automorphisms

New Features:

– IsGL2EquivalentExtended: Given homogeneous polynomials f1 and f2 of degree n where n is at
least 4 the intrinsic returns true if a matrix T exists such that the change of variable induced on
f1 by T , that is f1 ∗ T , is a multiple of f2. If there is such a matrix T then all such matrices are
returned.

– IsReducedIsomorphicHyperellipticCurves: Let C1 and C2 be two hyperelliptic curves with
defining polynomials f1 and f2. Given C1 and C2 as arguments, the intrinsic returns a boolean
indicating whether a matrix T exists that induces an isomorphism f1(x)→ f2(x). f there is such a
matrix T then all such matrices are returned.

– IsReducedIsomorphicHyperellipticCurves: Let C1 and C2 be two hyperelliptic curves with
defining polynomials f1 and f2. Given f1 and f2 as arguments, the intrinsic returns a boolean
indicating whether a matrix T exists that induces an isomorphism f1(x)→ f2(x). f there is such a
matrix T then all such matrices are returned.

– ReducedIsomorphismsOfHyperellipticCurves: Let C1 and C2 be two hyperelliptic curves with
defining polynomials f1 and f2. Given C1 and C2 as arguments, the intrinsic returns a full list of
matrices T that induce an isomorphism φf1(x)→ f2(x).

– ReducedIsomorphismsOfHyperellipticCurves: Let C1 and C2 be two hyperelliptic curves with
defining polynomials f1 and f2. Given f1 and f2 as arguments, the intrinsic returns a full list of
matrices T that induce an isomorphism φf1(x)→ f2(x).

– ReducedAutomorphismsOfHyperellipticCurve: Given a hyperelliptic curve C, the automorphism
group of the defining polynomial of C is returned in the form of a list of matrices.

– ReducedAutomorphismGroupOfHyperellipticCurve: Given the hyperelliptic curve C, defined by
the equation y2 = f(x), return the automorphism group of the polynomial f(x) (assumed to be of
even degree), as a permutation group.

7.4.5 Point Counting

Bug Fixes:

– An error that occurred sometimes in the intrinsic IsLocallySolvable when searching for points
on a hyperelliptic curve has been fixed.

– A memory leak in # for hyperelliptic curves has been fixed. (V2.25-8)

7.5 Plane Quartic Curves

The functionality for (smooth) plane quartic curves developed by R. Lercier, C. Ritzen-
thaler, and J. Sijsling is described here in detail.
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7.5.1 Basic Operations

New Features:

– DiscriminantOfTernaryQuartic: The discriminant of the given ternary quartic form Φ.

– CovariantHessian: The Hessian covariant of a ternary quartic form Φ.

– CovariantSigmaAndPsi; The covariants Σ and Ψ of a ternary quartic form Φ.

– QuarticCovariantsAndContravariants: The generators of the covariant and contravariant algebra
associated with a ternary quartic form Φ.

7.5.2 Invariants

New Features:

– DixmierOhnoInvariants: The Dixmier–Ohno invariants of the given plane projective quartic curve.

– DiscriminantFromDixmierOhnoInvariants: The discriminant of the quartic curve defined by the
given Dixmier-Ohno invariants.

– DixmierOhnoInvariantsEqual: Given Dixmier-Ohno Invariants DO1 and DO2 determine whether
the invariants are equivalent.

– DixmierOhnoAlgebraicRelations: Given the Dixmier-Ohno invariants of a plane quartic curve,
this intrinsic returns generators for the ideal generated by relations between the invariants.

– PlaneQuarticFromDixmierOhnoInvariants: Given a tuple of Dixmier–Ohno invariants this intrin-
sic constructs the corresponding plane quartic.

– TernaryQuarticFromDixmierOhnoInvariants: Given a tuple of Dixmier–Ohno invariants corre-
sponding to a ternary quartic this intrinsic constructs the quartic.

7.5.3 Isomorphisms and Automorphisms

New Features:

– IsIsomorphicPlaneQuartics: Given two plane quartic curves X1 and X2, return true if they are
isomorphic, false otherwise.

– IsomorphismsOfPlaneQuartics: Given two plane quartic curves X1 and X2, return a list of the
isomorphisms between them.

– IsIsomorphicTernaryQuartics: Given two ternary quartic forms F1 and F2, return true if they
are isomorphic, false otherwise.

– IsomorphismsOfTernaryQuartics: Given two ternary quartic forms F1 and F2, return a list of the
isomorphisms between them.

– AutomorphismsOfPlaneQuartic: The automorphisms of a plane quartic curve as a sequence of
matrices.

– AutomorphismsOfTernaryQuartic: The automorphisms of a ternary quartic form as a sequence of
matrices.

– AutomorphismGroupOfPlaneQuartic: The automorphism group (as an abstract group) of a plane
quartic curve.
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– AutomorphismGroupOfTernaryQuartic: The automorphism group (as an abstract group) of ternary
quartic form.

– GeometricAutomorphismGroup: Given a elliptic, hyperelliptic, or plane quartic curve this intrinsic
computes the geometric automorphism group.

7.5.4 Twists

New Features:

– TwistsOfPlaneQuartic: The twists of a given plane quartic curve defined over a finite field.
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8 Arithmetic Fields (Global)

8.1 Algebraic Number Fields

New Features:

– The verbose flag NumberFieldAlgorithms has been introduced to display when maximal orders,
class groups and unit groups are computed as well as information about the orders they are being
computed for.

Changes and Removals:

– The implementations of the Round 2 algorithm, Buchmann–Lenstra and Montes algorithms for
computing maximal orders have all been improved by using the Smith form of the trace matrix to
attempt to compute primes dividing the discriminant more efficiently. (V2.25-6)

– The implementation of the Buchmann-Lenstra algorithm has been further improved by the use of
the Dedekind criterion. (V2.25-8)

– Valuations of ideals of orders which are not known to be maximal is now computed by reducing
the generators of the ideal by the prime ideal and its powers.

– Compositum of two number fields has been made potentially more efficient by checking the smaller
degree field for normality first. (V2.25-3)

– Determining whether an element of a number field is an nth power has been made more efficient.
(V2.25-5)

– Checking for negative powers of zero has been added to PowerProduct.

Bug Fixes:

– Several issues affecting the implementation of the Montes algorithm for computing maximal orders
and decompositions of primes have been sorted out. (V2.25-8)

– Using the map returned by IsIsomorphic applied to 2 fields when one field is non simple has been
fixed. (V2.25-8)

– Decomposition of ramified primes in non-maximal orders of Kummer and Artin–Schrier extensions
has been fixed. (V2.25-7)

– Error checking has been improved to meet for 2 number fields to ensure both are defined by a single
polynomial. (V2.25-7)

– A bug in coercion of elements in large towers has been fixed. (V2.25-6)

– A bug in computing Automorphisms of a degree 2 field defined by a non-monic or non-integral
polynomial has been fixed. (V2.25-7)

– CoprimeRepresentative now always returns an element of a field of fractions of an order. (V2.25-4)

– A bug in coercion of number field elements into coefficient rings in a tower has been fixed. (V2.25-5)

– The LCM of zero and another element of a quotient of an order has been fixed to return zero.
(V2.25-8)

– A crash in the intrinsic Solutions when solving certain Thue equations has been fixed. (V2.25-9)
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8.1.1 Quadratic Fields

Changes:

– IsQuadratic now returns true for all degree 2 fields and also returns an isomorphic radical extension
as a FldQuad. (V2.25-3)

Bug Fixes:

– A bug in RingClassGroup for orders of quadratic fields has been fixed. (V2.25-7)

– Conductors of orders of quadratic fields > 230 are now handled better. (V2.25-2)

8.2 Class Field Theory for Number Fields

Changes:

– Checking that extensions are normal and abelian when constructing an AbelianExtension has been
increased. (V2.25-6)

– The computation of RayClassGroups has been improved by the use of a power product representa-
tion of units.

Bug Fixes:

– A crash in HeckeCharacterGroup due to equal but non identical orders has been fixed. (V2.25-9)

8.3 Algebraic Function Fields

Changes and Removals:

– Valuations of ideals of orders which are not known to be maximal are now computed by reducing
the generators of the ideal by the prime ideal and its powers.

– The implementation of the Buchmann-Lenstra algorithm has been improved by the use of the
Dedekind criterion. (V2.25-8)

Bug Fixes:

– A bug when testing IsIsomorphic of two curves or function fields has been fixed by F. Hess.
(V2.25-7)

– Decomposition of ramified primes in non-maximal orders of Kummer and Artin–Schrier extensions
has been fixed. (V2.25-7)

– A bug in coercion of function field elements into coefficient rings in a tower has been fixed. (V2.25-5)

– Several issues affecting the implementation of the Montes algorithm for computing maximal orders
and decompositions of primes have been sorted out. (V2.25-8)
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8.4 Galois Groups

Bug Fixes:

– A fix has been made to the computation of the GaloisGroup of a reducible polynomial over a
rational function field over Q having zero as a root. (V2.25-7)

– A fix has been made when the Prime parameter to GaloisGroup is set. (V2.25-7)

– SolveByRadicals for polynomials over the rational field has has a recently introduced bug fixed.
(V2.25-6)

– The roots returned by GaloisSplittingField when given a polynomial over a number field were
sometimes wrong. This has been fixed. (V2.25-9)

8.5 Montes Algorithm

The new ideal type OMIdl is available for ideals of number fields and function fields. The
new divisor type OMDiv is available for function fields.

Changes and Removals:

– The implementations of the Montes algorithm for computing maximal orders of number fields has
been improved by using the Smith form of the trace matrix to attempt to compute primes dividing
the discriminant more efficiently. (V2.25-6)

Bug Fixes:

– Several issues affecting the implementation of the Montes algorithm for computing maximal orders
and decompositions of primes have been sorted out. (V2.25-8)

New Features:

– The Montes can be called directly for a polynomial or an algebraic field and a prime. The Single
Factor Lifting Algorithm can also be called directly on a prime ideal in OM-representation using
the intrinsic SFL.

– The intrinsic SetUseMontes controls whether the Montes algorithm is used by default for maximal
order and decomposition calculations in number fields and function fields. Information regarding
such setting can be retrieved through GetUseMontes.

8.5.1 Ideals in OM-representation

New Features:

– Ideals in OM-representation can be converted to an ideal of type RngOrdFracIdl by calling Ideal.
An OM-representation can be computed from a RngOrdFracIdl or from generating elements. using
OMRepresentation.

– The sum, product, quotient and powers of ideals in OM-representation can be calculated.

– Ideals in OM-representation can be tested for being the one or zero ideal and for equality with
other ideals so represented. An element can be tested for being in an OMIdl. It can be determined
whether an OMIdl is a subset of another such ideal.
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– Primality and integrality of ideals in OM-representation can be determined.

– A pIntegralBasis, SIntegralBasis and Basis can be computed for an ideal in OM-representation.
Two elements which generate an ideal in OM-representation are turned by TwoElement.

– Elements and OM-represented ideals can have their Valuation calculated at a prime ideal in OM-
representation. Elements can be reduced mod such prime ideals and a local expansion computed
using Reduction.

– The Factorization of ideals in OM-representation can be calculated.

– Prime ideals in OM-representation can have their ResidueField and Degree computed.

8.5.2 Divisors in OM-representation

New Features:

– Divisors in OM-representation can be constructed from one or two OMIdl or a function field element
using OMDivisor.

– The ZeroDivisor and PoleDivisor of function field elements are divisors in OM-representation.

– A divisor of degree one of a function field can be constructed using OMDivisorOfDegreeOne.

– OM-representations can be computed for divisors of type DivFunElt using OMDivisor and Divisors
of type DivFunElt can be formed from OMDiv.

– Divisors in OM-representation can be added, subtracted and multiplied by a scalar. The GCD of 2
divisors can be computed.

– Equality of divisors in OM-representation is available. Divisors can be tested for being positive
(IsPositive) and principal (IsPrincipal).

– The Support of a divisor in OM-representation is a sequence of prime ideals in OM-representation
and a sequence containing the valuations of the divisor at those primes. The Valuation of a divisor
can be computed at prime ideals in OM-representation.

– Divisors in OM-representation can have their Height and Degree computed.

– A Basis for the Riemann-Roch space of a divisor in OM-representation can be computed along
with the Dimension of the space. A ReducedBasis and a SemiReducedBasis are also available.

– The SuccessiveMinima and ApproximatedSuccessiveMinima of a divisor can be calculated.

20



9 Arithmetic Fields (Local)

9.1 p-adic Rings and their Extensions

Changes and Removals:

– The computation of GCDs during Factorization of polynomials over local rings has been made
more efficient when one of the polynomials is linear and divides the other.

Bug Fixes:

– A bug affecting pSelmerGroup, PrincipalUnitGroupGenerators and ResidueSystem for local
rings containing more than 1 unramified extension has been fixed. (V2.25-6)

– A bug in the construction of a local field which is not a scalar multiple of a monic integral polynomial
has been fixed. (V2.25-6)

– Testing IsNormal for finite precision rings has been fixed. (V2.25-4)

9.2 Series Rings

Changes and Removals:

– The computation of GCDs during Factorization of polynomials over local rings has been made
more efficient when one of the polynomials is linear and divides the other.

– Improvements have been made to GCD computations for polynomials over extensions of series rings.

Bug Fixes:

– Some crashes in Factorization with the Extensions parameter set to true have been fixed.
(V2.25-7, V2.26)
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10 Basic Rings and Fields

10.1 Integer Ring

Bug Fixes:

– A rare crash in ECPP (coming from IsPrime) has been fixed (V2.25-9).

10.2 Finite Fields

New Features:

– The default strategy for selecting the Pohlig-Hellman discrete logarithm algorithm has been im-
proved for general finite fields. Also, if K is a finite field, one may now set the attribute

K‘UsePHLog

(with the backquote operator) to assert whether the Pohlig-Hellman algorithm should or not should
be used when computing logarithms in K.

Changes and Removals:

– Basis has been fixed to be a relative basis. (V2.25-6)

10.3 Real and Complex Fields

Bug Fixes:

– A bug in computing the complex roots of a polynomial has been fixed. (V2.25-2)

10.4 Univariate Polynomial Rings

New Features:

– Polynomial factorization over finite fields has been greatly sped up when there are a very large
number of factors of equal degree.

– The von zur Gathen/Kaltofen/Shoup-based algorithm for polynomial factorization over finite fields
has had some further speedups in general.

– The &* operator, when applied to univariate polynomials of the same degree, has been greatly sped
up.

– A parallel version of the Schoenhage-Strassen FFT algorithm for multiplication of polynomials of
high degree and with very large integer coefficients has been developed and may be selected with
SetParallelFFT.

Bug Fixes:
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– A bug in Normalize for univariate polynomials defined over integer residue class rings has been
fixed, so the result is guaranteed to be unique. (V2.25-6)

– A bug in EquidimensionalPart has been fixed (V2.25-5).

– A bug that caused a crash in the intrinsic Factorization when applied to a univariate polynomial
over a large degree (32) number field has been fixed.

10.5 Multivariate Polynomial Rings

New Features:

– A major new sparse representation has been developed for monomials of multivariate polynomial
rings. As a result, several types of computations involving polynomials with many variables have
been sped up and take less memory (particularly when the monomials have very low degree). This
includes basic arithmetic, the evaluation of homomorphisms, and the computation of Gröbner bases.

– The new procedure SetSparseMonomialMinRank(R) sets the limit R so that from now on, whenever
a multivariate polynomial ring P is created with at least R variables (i.e., has rank at least R), the
sparse representation is used for the monomials of P . The initial value of R is currently 20. Setting
R to 0 means that the sparse representation will not be used (so the existing dense representation
alone will be used). The corresponding function GetSparseMonomialMinRank() returns the current
value of R.

– Some automatic coercions are now handled properly with chains of mixed univariate/polynomial
rings.

Bug Fixes:

– A crash when computing the variety of a zero-dimensional bivariate ideal over the algebraic closure
of a finite field has been fixed.

– The check for overflow in the number of monomials in a multivariate polynomial ring was not quite
correct and has been fixed. (V2.25-6)

– Crashes in multivariate polynomial GCD over finite fields have been fixed. (V2.25-7, V2.25-9)

– A hang in polynomial GCD over a certain class of high-degree number fields has been fixed. (V2.25-
7)

11 Coding Theory

11.1 Linear Codes over Finite Fields

New Features:

– Both POSIX threads and distributed computation are now available for the computation of the
minimum weight and weight distribution of a code. The speed-up factor achieved is approximately
equal to the number of cores used. Many associated operations such as the enumeration of all
codewords of minimum weight also benefit.

Bug Fixes:

– A crash in ConstantWords over large non-prime finite fields has been fixed. (V2.25-8)
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12 Commutative Algebra

12.1 Ideal Theory and Gröbner Bases

New Features:

– The function GroebnerBasis when applied to an ideal or set/sequence of polynomials now has a
second return value D which gives the integer sequence of degrees encountered in each step of the
F4 algorithm (whether computing the easy GB before a conversion, or a direct F4 computation),
when that is non-trivial.

– The function EasyIdeal similarly now has a second return value D giving the sequence of degrees
encountered when computing the easy basis (the third return value is now the isomorphism map
which used to be the second return value).

– The algorithm to compute the Hilbert series or Hilbert polynomial of an ideal of a multivariate ring
R has been greatly improved, particularly when there are a large number of variables in R.

– The algorithm to compute the dimension of an ideal of an ideal of a multivariate ring R and a
corresponding maximally independent set has been greatly improved, particularly when there are a
large number of variables in R.

– The F4 algorithm for inputs defined over GF(2k) for 1 < k < 32 in the sparse case has been
improved.

– For the dense F4 algorithm in ‘HFE’ mode, the whole reduction phase is now completely parallelised
when POSIX threads are selected by SetNthreads. This is faster than the distinct calls to matrix
multiplication in the general dense algorithm and significant memory saving is also achieved. The
80-variable Patarin HFE Challenge 1 can now be solved in 28 seconds on a 4-core 3.6GHz Intel Core
i7-7700 processor.

Changes:

– The second return value of GroebnerBasis(S) for a set/sequence S is now the third return value
and the second return value of EasyIdeal is now the third return value; see above for more details.

Bug Fixes:

– A crash when computing large Groebner bases over non-prime finite fields of characteristic 2 has
been fixed. (V2.25-6)

– Incorrect sign handling when computing coordinates of polynomial/vectors in ideals/modules de-
fined over exterior algebras has been fixed. (V2.25-6)

– A missing error check for noncommutative Groebner basis computation over unsupported rings has
been added. (V2.25-6)

– A bug in Variety for ideals defined over algebraic closures has been fixed. (V2.25-8)

– A crash in computing Groebner bases over the field GF(2k) for k = 2, 3, 4 has been fixed. (V2.25-9)

– A crash in computing primary decomposition over algebraically closed fields has been fixed. (V2.25-
9)
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12.2 Modules over Multivariate Polynomial Rings

New Features:

– The algorithm to compute the Hilbert series or Hilbert polynomial of a module over a multivariate
ring R has been greatly improved, particularly when there are a large number of variables in R.

12.3 Invariant Theory

New Features:

– Some very major improvements in speed and memory usage have been achieved in the linear algebra
method for computing the monomials of given degree for an invariant ring (by use of sparse linear
algebra where possible).

This now allows the computation of properties such as the primary and secondary invariants in the
modular case for much larger invariant rings than were previously possible.

For example, computing the primary invariants of the natural degree-5 representation of SU5(2)
(with coefficient ring GF(22)) is now about 40 times faster than previously.
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13 Groups

13.1 Classical Groups

New Features:

– The algorithm to compute the conjugacy invariants of all classical groups in odd characteristic has
been updated and as a result there is a significant speed increase in computing the conjugacy classes
of classical groups.

Thanks to new code from Eamonn O’Brien and Giovanni de Franceschi it is now possible to compute
the conjugacy classes, centralisers and conjugating elements for all classical groups, including groups
in characteristic 2. The new intrinsics include ClassicalIsConjugate, ClassicalCentraliser,
ClassicalClassMap, ClassesForFixedSemisimple and IsometryGroupClassLabel.

Changes:

– The intrinsic Classes (and hence its synonym ConjugacyClasses) has been modified so that it
uses the new code when the input is a classical group.

– The implementations of the intrinsics GOMinus, SOMinus and OmegaMinus have been changed.
The previous implementations can be accessed via the intrinsics AltGOMinus, AltSOMinus and
AltOmegaMinus. The groups returned by GOMinus(n,q) and AltGOMinus(n,q), for example, will
be isomorphic but the generators returned for AltGOMinus(n,q) may vary from session to session.

Bug Fixes:

– Two bugs in the code for GLNormaliser which caused it to crash have been fixed.

13.2 Finite Groups

Additions:

– The new intrinsic MinimalDegreePermutationRepresentation developed by Derek Holt takes a
finite group G (of type GrpPerm, GrpMat, GrpAb or GrpPC) as input, and computes a faithful per-
mutation representation of G of smallest possible degree. The representation and its image, which
is isomorphic to G, are returned.

13.3 Matrix Groups Over Finite Fields

Changes:

– The handling of representations of SL(2, q) inside CompositionTree has been revised to ensure that
all possible reductions are performed before calling RecogniseSL2.

– The intrinsic CompositionTreeVerify was revised to ensure that all generators of the input group
G lie in the group H defined by the CompositionTree data structure.

– The code which converted the return value of tt SpinorNorm to the Zassenhaus convention has been
removed. This ensures that in characteristic not 2 the spinor norm of an element g of the orthogonal
group is consistent with SpinorNorm(V,g), where V is a quadratic or inner product space.
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13.4 p-Groups

New Features:
The TameGenus package developed by P.A. Brooksbank, J. Maglione, and J.B. Wilson
provides fast algorithms for computing automorphism groups and deciding isomorphism
for “tame genus” p-groups.

– If G is a finite p-group of tame genus, the intrinsic TGAutomorphismGroup returns the automorphism
group of G.

– If G and H are finite p-groups of tame genus, the intrinsic TGIsIsomorphic returns true if G and
H are isomorphic.

– If G is a finite p-group, the intrinsic IsTameGenusGroup decides whether TGAutomorphismGroup

and TGIsIsomorphic can be applied to G.

13.5 Databases of Groups

New Features:

A database which currently comprises the 403,874 simple groups of order less than 1020

has been installed. While Magmacontains tools that allow the user to construct any finite
simple group, the purpose of this facility is to make it easy to iterate through a selection
of simple groups. When reading the descriptions of the intrinsics below it is important to
note that a simple group may be specified in one of three ways:-

• A string giving the standard name of the simple group.

• An internal description of the simple group consisting of a tuple containing three integers.

• The number of the simple group in the database.

– The intrinsic SimpleGroup returns a simple group isomorphic to the specified simple group. The
group may be specified by any one of the above three methods.

– The intrinsic SimpleGroupOfOrder returns a simple group of the indicated order. The order may
be given either as an integer or as a factorisation sequence containing the factored order.

– The intrinsic NumberOfSimpleGroups returns the number of simple groups present in the database.

– Given the database number of a simple group the intrinsic SimpleGroupName returns the standard
name of the simple group.

– Given the standard name of a simple group the intrinsic SimpleGroupNameToNumber returns the
number of the simple group in the database.

– Given the internal descriptor of a simple group the intrinsic SimpleGroupIdToNumber returns the
number in the database of the simple group specified by the internal descriptor.

– Given the database number of a simple group the intrinsic SimpleGroupId returns the internal
descriptor as a tuple of three integers.
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14 Lattices and Quadratic Forms

14.1 Lattices

New Features:

– Both POSIX threads and distributed computation type parallelisation are now available for the
enumeration of shortest vectors. The speed-up factor achieved is approximately equal to the number
of cores used.

– The parallelisation of short vector enumeration automatically parallelises the computation of lat-
tice minimum, packing radius, Hermite constant, centre density, density of the lattice and other
computations that involve this type of enumeration.

– Both POSIX threads and distributed computation type parallelisation are now available for the
enumeration of closest vectors. The speed-up factor achieved is close to the number of cores used.

– The parallelisation of closest vectors enumeration automatically parallelises computations that in-
volve this type of enumeration.

– The integral variant of the LLL algorithm (selected by the parameter Method := "Integral") now
has POSIX-thread support (selected by SetNthreads).

– The algorithm for Coordinates for lattice elements defined over a real field has been made more
robust.

– New functions ShortVector, ShortestVector, CloseVector, ClosestVector to return a single
non-zero short/close/shortest/closest vector in a lattice.

Bug Fixes:

– A bug giving incorrect results in the maps for DualQuotient has been fixed. (V2.25-3)

– Setting one of the attributes Minimum, Kissing Number, or Theta Series when one of the other
attributes is set will no longer print the theta series. (V2.25-6)

– Bugs in IsCoercible and Coordinates for lattice elements defined over a real field have been fixed.

14.2 Lie Algebras

New Features:

– The closure algorithm for the computation of subalgebras of Lie algebras has been greatly improved,
particularly in the case of large sparse algebras in characteristic zero.

15 Linear Algebra and Module Theory

15.1 Matrices

New Features:

– Multiple NVIDIA GPUs are now supported for matrix multiplication over very small finite fields.
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Changes:

– AddRow and AddColumn now accept a RngElt as a scalar, and not only an integer.

Bug Fixes:

– An issue where the multiplication of two large integer matrices could incorrectly compute the re-
sulting size (leading to memory exhaustion) has been fixed. (V2.25-4)

– A bug when computing the determinant of matrices over polynomial rings over non-domains has
been fixed. (V2.25-6)

– A crash in the integer Hermite algorithm (arising from computing the map arising from calls by
AbelianQuotient) has been fixed. (V2.25-7)

– A bug that occurred when taking projections of subspaces of a vector space over the rationals has
been fixed. (V2.25-7)

New Features:

– The efficiency of the function Submatrix(S, I, J) where S is a sparse matrix and I, J are index
sequences has been greatly improved (by writing an inefficient internal version).

15.2 Bilinear and Sesquilinear Forms

New Features:

– The intrinsic GramSchmidtPair performs a Gram-Schmidt reduction of the matrix of a reflexive
bilinear form using a new optimal algorithm due to James Wilson.

– The intrinsic IsReflexive determines whether a matrix represents a reflexive form; if it does, the
type of the form and the multiplier are returned.

– EnsureUpperTriangular returns returns the upper triangular matrix defining the same quadratic
form as a given matrix.

Changes:

– The number of values accepted by the Variant parameter of the intrinsics StandardQuadraticForm
and StandardSymmetricForm has been reduced from three to two: "Default" and "Revised". This
is for consistency with the changes to the generators of the even dimensional orthogonal groups of
minus type. The "Revised" variant returns the form preserved by the groups constructed by
AltGOMinus, AltSOMinus and AltOmegaMinus.

15.3 Vector Spaces

New Features:

– The *:= operator has been improved for vector space elements.
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15.4 Multilinear Algebra

New Features:

– The intrinsic MatrixTensor returns the K-tensor given by rectangular matrix multiplication.

– A subspace of bilinear tensors can be multiplied on the left or right to give a new subspace.

– The composition of InducedTensor and AsMatrices is implemented efficiently in SliceAsMatrices.

– The intrinsic DerivedFrom will include some tensor data in a given matrix object,

– Now that HeisenbergGroup returns a GrpMat, HeisenbergGroupPC is provided to return a GrpPC.

– Additional random tensors can be generated by RandomCotensor, RandomAlternatingTensor,
RandomAntisymmetricTensor and RandomSymmetricTensor.

– The intrinsic IsHomotopism decides whether given maps form a homotopism.

– A tensor can be Precomposed with a map in a given coordinate.

– The SelfAdjointAlgebras for a tensor can be constructed.

– More signatures are provided for Homotopism, Centroid and DerivationAlgebra.

– The . operator can be used on a homotopism Hmtp to gain the map on a coordinate. A homotopism
can now be applied @ to a tensor.

– The Valence of a homotopism can be retrieved. Several Shuffles of a homotopism can be computed.

16 Linear Associative Algebras

16.1 Associative Algebras

Bug Fixes:

– Incorrect printing of elements in Magma mode has been fixed.

16.2 Quaternion Algebras

Bug Fixes:

– A bug when computing of the discriminant of a quaternion algebra has been fixed by J. Voight.
(V2.25-6)
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17 Representation Theory

17.1 K[G]-Modules

New Features:

– There is a new function AbsolutelyIrreducibleModules(G) for a finite group G to compute all
the non-isomorphism absolutely irreducible G-modules in characteristic zero, which are written over
Q or a number field of minimal degree. As an example, the 72 absolutely irreducible G-modules for
the group PSL(3, 8) are computed in about 2 hours, including dimension-511 modules written over
a number field of degree 18.

– The function IrreducibleModules(G, K) now supports the case that K is a quadratic field or a
simple number field and returns the non-isomorphic irreducible K[G]-modules of a finite group G.

– The function GModule(chi) to compute an individual absolutely-irreducible G-module for an ab-
solutely irreducible character chi has been greatly improved for a wide class of inputs.

– The functions IrreducibleModules(G, K) and AbsolutelyIrreducibleModules(G, K), where G
is a non-soluble group and K is a finite field, have now been extended to include matrix groups over
all types of ring. Formerly, it was essentially restricted to permutation groups.

Changes:

There is an important change when computing irreducible KG-modules, where K is a
finite field and G is a matrix group:

– The functions IrreducibleModules(G, K) and AbsolutelyIrreducibleModules(G, K), where G
is a soluble group and K is a finite field, have been made much more reliable by using a new
implementation of the Schur algorithm.

– For irreducible modules use IrreducibleModules(G, K) which will return the irreducible modules
for G over the finite field K.

– For absolutely irreducible modules use IrreducibleModules(G, K) or
AbsolutelyIrreducibleModules(G, p), where p is the characteristic of K. This returns the ab-
solutely irreducible modules for G in characteristic p (written over GF(pk) for minimal k in each
case).

Bug Fixes:

– A bug has been fixed which caused functions to compute irreducible modules for a group over a
finite field (such as IrreducibleModules and AbsolutelyIrreducibleModules) to crash in certain
circumstances. (V2.25-7)

– A bug in the code for the function IrreducibleModulesSchur which occurs when computing KG-
modules, K a finite field and G a soluble group, has been fixed. (V2.25-7)

– A bug in the characteristic-0 Meataxe which caused it to hang in the case of some small KG-modules
has been fixed. (V2.25-7)

– A bug in the characteristic-0 Meataxe which caused it to crash when splitting a module over a
cyclotomic field has been fixed. (V2.25-7)
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– An incorrect result for the function IndecomposableSummands (or DirectSumDecomposition) ap-
plied to a QG-module where G is a soluble group has been fixed. (V2.25-8)

– A crash in IsIsomorphic for G-modules over finite fields has been fixed. (V2.25-9)

– The IsIsomorphic algorithm for G-modules over finite fields has been improved, so that the initial
tests for non-isomorphism are much stronger, fixing slow behaviour for certain inputs. (V2.25-9)

– A crash in intrinsic IrreducibleModules when applied to a KG-module, where K is the rationals,
has been fixed. (V2.25-9)

– A crash in intrinsic Constituents when applied to a KG-module, where K is a cyclotomic field,
has been fixed. (V2.25-9)
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