If J is the matrix of a bilinear form, the Lie algebra of derivations of J consists of the matrices X such that XJ + JXtr = 0.
Another way to construct a Lie algebra from an alternating form β with matrix J defined on a vector space V of dimension n over a field F is to set L = V direct-sum F and define the multiplication by [ei, ej] = β(ei, ej), where e1, e2, ..., en is a basis for V. (All other structure constants are 0.) This is the (generalised) Heisenberg algebra.
Rep: MonStgElt Default: "Sparse"
Check: BoolElt Default: false
The Lie algebra of derivations of the bilinear form with matrix J. The possible values for Rep are "Dense", "Sparse" and "Partial" with the default being "Sparse".
> J := StandardAlternatingForm(6,7); > L := DerivationAlgebra(J); > IsSimple(L); true > SemisimpleType(L); C3
> J := StandardAlternatingForm(6,8);
> L := DerivationAlgebra(J);
> SemisimpleType(L);
C3
> Dimension(Centre(L));
1
> CF := CompositionFactors(L);
> CF;
[
Lie Algebra of dimension 1 with base ring GF(2^3),
Lie Algebra of dimension 14 with base ring GF(2^3),
Lie Algebra of dimension 1 with base ring GF(2^3),
Lie Algebra of dimension 1 with base ring GF(2^3),
Lie Algebra of dimension 1 with base ring GF(2^3),
Lie Algebra of dimension 1 with base ring GF(2^3),
Lie Algebra of dimension 1 with base ring GF(2^3),
Lie Algebra of dimension 1 with base ring GF(2^3)
]
> exists(I){I : I in CF | Dimension(I) eq 14 };
true
> IsSimple(I);
true
> SemisimpleType(I);
G2
Rep: MonStgElt Default: "Sparse"
Check: BoolElt Default: false
The nilpotent Lie algebra whose structure constants are obtained from the alternating form with matrix J as described above. The possible values for Rep are "Dense", "Sparse" and "Partial" with the default being "Sparse".
> Q := CS[1];
> W := L/Q;
> W;
Lie Algebra of dimension 7 with base ring GF(2^3)
> Z := Centre(W);
> z := Z.1;
> exists(u1,v1){ <u,v> : u,v in W | u*v ne 0 and u*v eq z };
true
> W1 := Centraliser(W,sub<W|u1,v1>);
true
> exists(u2,v2){ <u,v> : u,v in W1 | u*v ne 0 and u*v eq z };
true
> W2:= Centraliser(W1,sub<W1|u2,v2>);
> exists(u3,v3){ <u,v> : u,v in W2 | u*v ne 0 and u*v eq z };
> H := HeisenbergAlgebra(J);
> f := hom< H -> W | u1,u2,u3,v3,v2,v1,z >;
> forall{ <u,v> : u,v in Basis(H) | f(u*v) eq f(u)*f(v) };
true
> Kernel(f);
Lie Algebra of dimension 0 with base ring GF(2^3)
> Image(f) eq W;
true