For 1-dimensional Galois orbits of cuspidal eigenforms in spaces of ternary orthogonal modular forms, returns the associated classical newform.> ModularForm(fs[2]); q - 2*q^2 - q^3 + 2*q^4 + q^5 + 2*q^6 - 2*q^7 - 2*q^9 - 2*q^10 + q^11 + O(q^12) > fQ; q - 2*q^2 - q^3 + 2*q^4 + q^5 + 2*q^6 - 2*q^7 - 2*q^9 - 2*q^10 + q^11 + O(q^12)
Precision: RngIntElt Default: 25
The theta series associated to f, with precision qn, where n is given by Precision. Theta1 returns the normalized cuspidal newform.
Precision: RngIntElt Default: 25
The theta series of genus g associated to f, which is a Siegel modular form of genus g, given as an associative array whose keys are the exponents ei, j of the variables qi, j, and whose values are the coefficient in the Fourier expansion of f for the monomial qe = ∏i, j qi, jei, j. Precision determines the maximal exponent ei, i for the diagonal entries qi, i. Theta2 is the same as setting g = 2.
Precision: RngIntElt Default: 25
The Shimura Lift of f in the space Mk(N) with precision qn, where n is given by Precision.
> L:= TernaryQuadraticLattices(121)[1][1];
> M := OrthogonalModularForms(L);
> fs := HeckeEigenforms(M);
> f := fs[2];
> theta<q> := Theta1(f : Precision := 25^2);
> theta + O(q^25);
q + q^3 - 2*q^4 - q^5 - q^11 - 2*q^14 + 3*q^15 + 2*q^16 + 2*q^20 + 2*q^22 -
3*q^23 + O(q^25)
> qExpansion(&+Basis(CuspForms(44,3/2)),25);
q + q^3 - 2*q^4 - q^5 - q^11 - 2*q^14 + 3*q^15 + 2*q^16 + 2*q^20 + 2*q^22 -
3*q^23 + O(q^25)
As expected θ(f) ∈S3/2(44), but using the Shimura lift, we can associate to it a form in S2(11). Recall that the initial construction does not yield a newform, as we see explicitly below.
> ShimuraLift(theta, 2, 11);
q - 2*q^2 - q^3 + 2*q^4 + q^5 + 2*q^6 - 2*q^7 - 2*q^9 - 2*q^10 - 2*q^12 + 4*q^13
+ 4*q^14 - q^15 - 4*q^16 - 2*q^17 + 4*q^18 + 2*q^20 + 2*q^21 - q^23 +
O(q^25)
> f11 := qExpansion(Basis(CuspForms(11,2))[1],25);
> f11 - Evaluate(f11, q^11);
q - 2*q^2 - q^3 + 2*q^4 + q^5 + 2*q^6 - 2*q^7 - 2*q^9 - 2*q^10 - 2*q^12 + 4*q^13
+ 4*q^14 - q^15 - 4*q^16 - 2*q^17 + 4*q^18 + 2*q^20 + 2*q^21 - q^23 +
O(q^25)