Related Structures

In this section functions for creating other structures from a root system are briefly listed. The reader is referred to the appropriate chapters of the Handbook for more details.

RootDatum(R) : RootSys -> RootDtm
The (split) root datum corresponding to the root system R. The coefficients of the simple roots and coroots must be integral; otherwise an error is signalled. See Chapter ROOT DATA
CoxeterGroup(grpcat,R) : Cat, RootSys -> grpcat
The Coxeter group (of type grpcat) of a root system R. There are variations of this signature. The first argument can be GrpMat, GrpPermCox, GrpPerm, GrpFPCox or GrpFP and the second argument can be a root system or root datum. See Chapter COXETER GROUPS. If the first argument is GrpFPCox the braid group and pure braid group can be computed from the Coxeter group using the commands in Section Braid Groups.
CoxeterGroup(R) : RootSys -> GrpPermCox
WeylGroup(R) : RootSys -> GrpPermCox
The permutation Coxeter group with root system R. See Chapter COXETER GROUPS.
CoxeterGroup(GrpPermCox, R) : Cat, RootSys -> RngIntElt
ReflectionGroup(R) : RootSys -> GrpMat
The reflection group of the root system R. See Chapter REFLECTION GROUPS.
CoxeterGroup(GrpPermCox, W) : Cat, RootSys -> GrpPermCox
LieAlgebra(R, k) : RootSys, Rng -> AlgLie
The Lie algebra of the root system R over the base ring k. See Chapter LIE ALGEBRAS.
MatrixLieAlgebra(R, k) : RootSys -> GrpMat
The matrix Lie algebra of the root system R over the base ring k. See Chapter LIE ALGEBRAS.

Example RootSys_Related (H106E18)

> R := RootSystem("b3");
> SemisimpleType(LieAlgebra(R, Rationals()));
B3
> #CoxeterGroup(R);
48
V2.29, 21 October 2025