About
Calculator
Ordering
FAQ
Download
Documentation
Citations
Conferences
Links
Contact
CAG
Login
Magma
Computer • algebra
Documentation
Contents
Index (r)
Search
readi
readi identifier, prompt;
readi identifier;
reading
Reading a Complete File (INPUT AND OUTPUT)
Reading Edge Decorations (MULTIGRAPHS)
reading-file
Reading a Complete File (INPUT AND OUTPUT)
ReadObject
ReadObject(I) : IO -> Any
ReadObject(I) : IO -> Any
ReadObjectCheck
ReadObjectCheck(I) : IO -> BoolElt, Any
Real
GetDefaultRealField() : -> FldRe
GetShowRealTime() : -> BoolElt
IsReal(x) : AlgChtrElt -> BoolElt
IsReal(c) : FldComElt -> BoolElt
IsReal(a) : FldCycElt -> BoolElt
IsReal(p) : PlcNumElt -> BoolElt
IsReal(p) : PlcNumElt -> BoolElt
IsReal(z) : SpcHypElt -> BoolElt
IsRealReflectionGroup(G) : GrpMat -> BoolElt, [], []
IsTotallyReal(a) : AlgEtQElt -> BoolElt
IsTotallyReal(K) : FldAlg -> BoolElt
IsTotallyRealPositive(a) : AlgEtQElt -> BoolElt
QuarticNumberOfRealRoots(q) : RngUPolElt -> RngUPolElt
Re(z) : SpcHydElt -> FldReElt
Real(c) : FldComElt -> FldReElt
Real(z) : SpcHypElt -> FldReElt
RealEmbeddings(a) : FldAlgElt -> []
RealEmbeddings(a) : FldNumElt -> []
RealField() : -> FldRe
RealField(p) : RngIntElt -> FldRe
RealHomology(A) : ModAbVar -> ModTupFld
RealInjection(R) : RootSys -> .
RealMatrix(phi) : MapModAbVar -> ModMatFldElt
RealPeriod(E: parameters) : CrvEll -> FldReElt
RealPlaces(K) : FldAlg -> [PlcNumElt]
RealPlaces(K) : FldRat -> [PlcNumElt]
RealSigns(a) : FldNumElt -> []
RealTamagawaNumber(M) : ModSym -> RngIntElt
RealVectorSpace(H) : ModAbVarHomol -> ModTupFld
RealVolume(M, prec) : ModSym, RngIntElt -> FldPrElt
SetDefaultRealField(R) : FldRe ->
SetShowRealTime(v) : BoolElt ->
SplitRealPlace(A) : AlgQuat -> PlcNum
TotallyRealPositiveUnitGroup(S) : AlgEtQOrd -> Grp
TotallyRealSubAlgebra(K) : AlgEtQ -> AlgEtQ,Map
TotallyRealUnitGroup(S) : AlgEtQOrd -> Grp
real
Construction of Real Reflection Groups (REFLECTION GROUPS)
Real and Complex Embeddings (NUMBER FIELDS AND ORDERS)
Real and Complex Embeddings (NUMBER FIELDS)
REAL AND COMPLEX FIELDS
real-complex
Real and Complex Embeddings (NUMBER FIELDS AND ORDERS)
Real and Complex Embeddings (NUMBER FIELDS)
REAL AND COMPLEX FIELDS
RealEmbeddings
RealEmbeddings(a) : FldAlgElt -> []
RealEmbeddings(a) : FldNumElt -> []
RealField
RealField() : -> FldRe
RealField(p) : RngIntElt -> FldRe
RealHomology
RealHomology(A) : ModAbVar -> ModTupFld
RealInjection
RealInjection(R) : RootSys -> .
RealIntro
FldRe_RealIntro (Example H26E1)
Realisable
IsRealisableOverSmallerField(M) : ModGrp -> BoolElt, ModGrp
IsRealisableOverSubfield(M, F) : ModGrp, FldFin -> BoolElt, ModGrp
RealMatrix
RealMatrix(phi) : MapModAbVar -> ModMatFldElt
RealPeriod
RealPeriod(E: parameters) : CrvEll -> FldReElt
RealPlaces
RealPlaces(K) : FldAlg -> [PlcNumElt]
RealPlaces(K) : FldRat -> [PlcNumElt]
RealReflectionGroupByCartan
GrpRfl_RealReflectionGroupByCartan (Example H109E6)
RealReflectionGroupByRootDatum
GrpRfl_RealReflectionGroupByRootDatum (Example H109E7)
reals
Real Numbers in Magma (REAL AND COMPLEX FIELDS)
RealSigns
RealSigns(a) : FldNumElt -> []
RealTamagawaNumber
RealTamagawaNumber(M) : ModSym -> RngIntElt
Realtime
Realtime() : -> FldReElt
Realtime(t) : FldReElt -> FldReElt
RealVectorSpace
RealVectorSpace(H) : ModAbVarHomol -> ModTupFld
RealVolume
RealVolume(M, prec) : ModSym, RngIntElt -> FldPrElt
rec
Recognition Functions (ALMOST SIMPLE GROUPS)
rec< F | L > : RecFormat, FieldAssignmentList -> Rec
recap
Generalities (ALGEBRAIC SURFACES)
Contents
Index (r)
Search
V2.29, 21 October 2025