- Redundancy
- Redundant
- Ree
- IsLargeReeGroup(G) : GrpMat -> BoolElt, RngIntElt
- IsReeGroup(G) : GrpMat -> BoolElt, RngIntElt
- LargeReeElementToWord(G, g) : GrpMat, GrpMatElt -> BoolElt, GrpSLPElt
- LargeReeGroup(q) : RngIntElt -> GrpMat
- LargeReeSylow(G, p) : GrpMat, RngIntElt -> GrpMat, SeqEnum
- RecogniseLargeRee(G : parameters) : GrpMat -> BoolElt, Map, Map, Map, Map
- RecogniseRee(G : parameters) : GrpMat -> BoolElt, Map, Map, Map, Map
- ReeConjugacyClasses(G) : GrpMat -> SeqEnum
- ReeElementToWord(G, g) : GrpMat, GrpMatElt -> BoolElt, GrpSLPElt
- ReeGroup(q) : RngIntElt -> GrpMat
- ReeIrreducibleRepresentation(F, twists : parameters) : FldFin, SeqEnum[RngIntElt] -> GrpMat
- ReeMaximalSubgroups(G) : GrpMat -> SeqEnum, SeqEnum
- ReeMaximalSubgroupsConjugacy(G, R, S) : GrpMat, GrpMat, GrpMat -> GrpMatElt, GrpSLPElt
- ReeMaximals(q) : RngIntElt -> SeqEnum
- ReeSylow(G, p) : GrpMat, RngIntElt -> GrpMat, SeqEnum
- ReeSylowConjugacy(G, R, S, p) : GrpMat, GrpMat, GrpMat, RngIntElt -> GrpMatElt, GrpSLPElt
- ree-sylow
- ReeConjugacyClasses
- Reed
- ReedMullerCode(r, m) : RngIntElt, RngIntElt -> Code
- ReedMullerCodeRMZ4(s, r, m) : RngIntElt, RngIntElt, RngIntElt -> CodeLinRng, Mtrx
- ReedMullerCodeZ4(r, m) : RngIntElt, RngIntElt -> Code
- ReedMullerCodeZ4(r, m) : RngIntElt, RngIntElt -> CodeLinRng
- ReedMullerCodesLRMZ4(r, m) : RngIntElt, RngIntElt -> SeqEnum
- ReedMullerCodesRMZ4(s, m) : RngIntElt, RngIntElt -> Tup
- ReedSolomonCode(K, d, b) : FldFin, RngIntElt, RngIntElt -> Code
- ReedSolomonCode(n, d) : RngIntElt, RngIntElt -> Code
- reed
- reed-solomon-justesen
- ReedMullerCode
- ReedMullerCodeQRMZ4
- ReedMullerCodeRMZ4
- ReedMullerCodesLRMZ4
- ReedMullerCodesRMZ4
- ReedMullerCodeZ4
- ReedSolomonCode
- ReeElementToWord
- ReeGroup
- ReeIrreducibleRepresentation
- ReeMaximals
- ReeMaximalSubgroups
- ReeMaximalSubgroupsConjugacy
- Rees
- ReesIdeal
- ReeSylow
- ReeSylowConjugacy
- ref-group
- Reference
- reference
- reference-argument
- ReferenceDivisor
- Refine
- Refined
- RefineSection
- refl
- Reflection
- ComplexReflectionGroup(X, n) : MonStgElt, RngIntElt -> GrpMat, Map
- ComplexReflectionGroup(C) : Mtrx -> GrpMat, Map
- CoxeterGroup(GrpPermCox, R) : Cat, RootDtm -> GrpPermCox
- CoxeterGroup(GrpPermCox, R) : Cat, RootSys -> RngIntElt
- IrreducibleReflectionGroup(X, n) : MonStgElt, RngIntElt -> GrpMat
- IsPseudoReflection(r) : Mtrx -> BoolElt, ModTupRngElt, ModTupRngElt
- IsRealReflectionGroup(G) : GrpMat -> BoolElt, [], []
- IsReflection(w) : GrpFPElt -> BoolElt
- IsReflection(r) : Mtrx -> BoolElt, ModTupRngElt, ModTupRngElt
- IsReflectionGroup(G) : GrpMat -> BoolElt
- IsReflectionGroup(G) : GrpMat -> BoolElt
- IsReflectionSubgroup(W, H) : GrpPermCox, GrpPermCox -> BoolElt
- OrthogonalReflection(a) : ModTupFldElt -> AlgMatElt
- OrthogonalReflection(a) : ModTupFldElt -> AlgMatElt
- PseudoReflection(a, b) : ModTupRngElt, ModTupRngElt -> AlgMatElt
- PseudoReflectionGroup(A, B) : Mtrx, Mtrx -> GrpMat, Map
- Reflection(G, r) : GrpLie, RngIntElt -> GrpLieElt
- Reflection(W, r) : GrpPermCox, RngIntElt -> GrpPermElt
- Reflection(a, b) : ModTupRngElt, ModTupRngElt -> AlgMatElt
- ReflectionFactors(V, f) : ModTupFld, Mtrx -> SeqEnum
- ReflectionGroup(M) : AlgMatElt -> GrpMat
- ReflectionGroup(M) : AlgMatElt -> GrpMat
- ReflectionGroup(W) : GrpFPCox -> GrpMat, Map
- ReflectionGroup(W) : GrpFPCox -> GrpMat, Map
- ReflectionGroup(W) : GrpPermCox -> GrpMat
- ReflectionGroup(W) : GrpPermCox -> GrpMat, Map
- ReflectionGroup(W) : GrpPermCox -> GrpMat, Map
- ReflectionGroup(W) : GrpPermCox -> GrpMat, Map
- ReflectionGroup(N) : MonStgElt -> GrpMat
- ReflectionGroup(R) : RootSys -> GrpMat
- ReflectionMatrices(W) : GrpMat -> [AlgMatElt]
- ReflectionMatrices(W) : GrpPermCox -> []
- ReflectionMatrices(R) : RootDtm -> []
- ReflectionMatrices(R) : RootSys -> []
- ReflectionMatrix(W, r) : GrpMat, RngIntElt -> AlgMatElt
- ReflectionMatrix(W, r) : GrpPermCox, RngIntElt -> []
- ReflectionMatrix(R, r) : RootDtm, RngIntElt -> []
- ReflectionMatrix(R, r) : RootSys, RngIntElt -> []
- ReflectionPermutation(W, r) : GrpMat, RngIntElt -> []
- ReflectionPermutation(R, r) : RootDtm, RngIntElt -> []
- ReflectionPermutation(R, r) : RootSys, RngIntElt -> []
- ReflectionPermutations(W) : GrpMat -> []
- ReflectionPermutations(R) : RootDtm -> []
- ReflectionPermutations(R) : RootSys -> []
- ReflectionSubgroup(W, a) : GrpPermCox, () -> GrpPermCox
- ReflectionSubgroup(W, s) : GrpPermCox, [] -> GrpPermCox
- ReflectionWord(W, r) : GrpMat, RngIntElt -> []
- ReflectionWord(W, r) : GrpPermCox, RngIntElt -> []
- ReflectionWord(R, r) : RootDtm, RngIntElt -> []
- ReflectionWord(R, r) : RootSys, RngIntElt -> []
- ReflectionWords(W) : GrpMat -> []
- ReflectionWords(W) : GrpPermCox -> []
- ReflectionWords(R) : RootDtm -> []
- ReflectionWords(R) : RootSys -> []
- ShephardTodd(m, p, n) : RngIntElt, RngIntElt, RngIntElt -> GrpMat, Fld
- SimpleReflectionMatrices(W) : GrpMat -> [AlgMatElt]
- SimpleReflectionMatrices(W) : GrpPermCox -> []
- SimpleReflectionMatrices(R) : RootDtm -> []
- SimpleReflectionMatrices(R) : RootSys -> []
- SimpleReflectionPermutations(W) : GrpMat -> []
- SimpleReflectionPermutations(W) : GrpPermCox -> [GrpPermElt]
- SimpleReflectionPermutations(R) : RootDtm -> []
- SimpleReflectionPermutations(R) : RootSys -> []
- UnitaryReflection(a, zeta) : ModTupRngElt, FldElt -> AlgMatElt
V2.29, 21 October 2025