- ProjectionOntoImage
- Projective
- CompactProjectiveResolution(M, n) : ModAlg, RngIntElt -> Rec
- CompactProjectiveResolutionPGroup(M, n) : ModAlgBas, RngIntElt -> Rec
- CompactProjectiveResolutionsOfSimpleModules(A,n) : AlgBas, RngIntElt -> SeqEnum
- DimensionsOfProjectiveModules(B) : AlgBas -> SeqEnum
- FactoredProjectiveOrder(a) : AlgMatElt -> [ <RngIntElt, RngIntElt> ]
- FactoredProjectiveOrder(A) : AlgMatElt -> [ <RngIntElt, RngIntElt> ], RngElt
- FactoredProjectiveOrder(A) : AlgMatElt -> [ <RngIntElt, RngIntElt> ], RngElt
- FanOfFakeProjectiveSpace(W,Q) : SeqEnum, SeqEnum -> TorFan
- [Future release] FanOfProjectiveSpace(n) : RngIntElt -> TorFac
- FiniteProjectivePlane(D) : Inc -> Plane, PlanePtSet, PlaneLnSet
- FiniteProjectivePlane(W) : ModTupFld -> PlaneProj
- FiniteProjectivePlane< v | X : parameters > : RngIntElt, List -> PlaneProj
- FormallyResolveProjectiveHyperSurface(S): Srfc -> List, RngIntElt
- FromAnalyticJacobianProjective(z, A) : Mtrx[FldCom], AnHcJac -> SeqEnum
- HasProjectiveDerivation(F) : RngDiff -> BoolElt
- HasProjectiveDerivation(R) : RngDiffOp -> BoolElt
- IsAdditiveProjective(C) : CodeAdd -> BoolElt
- IsFakeWeightedProjectiveSpace(X) : TorVar -> BoolElt
- IsOrdinaryProjective(X) : Sch -> BoolElt
- IsOrdinaryProjectiveSpace(X) : Sch -> BoolElt
- IsProjective(C) : Code -> BoolElt
- IsProjective(C) : Code -> BoolElt
- IsProjective(C) : Code -> BoolElt
- IsProjective(M) : ModAlg -> BoolElt, SeqEnum
- IsProjective(M) : ModGrp -> BoolElt
- IsProjective(X) : Sch -> BoolElt
- IsProjective(X) : Sch -> BoolElt
- IsProjective(X) : TorVar -> BoolElt
- IsWeightedProjectiveSpace(X) : TorVar -> BoolElt
- MakeProjectiveClosureMap(A, P, S) : Aff,Prj,SeqEnum ->
- PGO(arguments)
- PGOMinus(arguments)
- PGOPlus(arguments)
- PSO(arguments)
- PSOMinus(arguments)
- PSOPlus(arguments)
- ParametrizeProjectiveHypersurface(X, P2) : Srfc, Prj -> BoolElt, MapSch
- ParametrizeProjectiveSurface(X, P2) : Srfc, Prj -> BoolElt, MapSch
- PolytopeOfProjectiveSpace(d) : RngIntElt -> TorPol
- ProductProjectiveSpace(k,N) : Rng,SeqEnum -> PrjScrl
- ProjectiveClassicalCentraliser(G, g) : GrpMat, GrpMatElt -> GrpMat
- ProjectiveClassicalClasses(type,d,q) : MonStgElt, RngIntElt, RngIntElt -> SeqEnum, GrpPerm, HomGrp, SeqEnum
- ProjectiveClassicalIsConjugate(G, g, h) : GrpMat, GrpMatElt, GrpMatElt-> BoolElt, GrpMatElt
- ProjectiveClosure(f) : MapSch -> MapSch
- ProjectiveClosure(A): Sch -> Sch
- ProjectiveClosure(C) : Sch -> Sch
- ProjectiveClosure(X) : Sch -> Sch
- ProjectiveClosureMap(A) : Aff -> MapSch
- ProjectiveCover(M) : ModAlg -> ModAlg, ModMatFldElt, SeqEnum[ModMatFldElt], SeqEnum[ModMatFldElt], SeqEnum[RngIntElt]
- ProjectiveCover(M) : ModGrp -> ModGrp, ModMatGrpElt
- ProjectiveEmbedding(P) : PlaneAff -> PlaneProj, PlanePtSet, PlaneLnSet, Map
- ProjectiveFunction(f) : FldFunFracSchElt -> FldFracElt
- ProjectiveFunction(f) : FldFunFracSchElt -> RngFunFracElt
- ProjectiveGammaLinearGroup(arguments)
- ProjectiveGammaUnitaryGroup(arguments)
- ProjectiveGeneralLinearGroup(arguments)
- ProjectiveGeneralUnitaryGroup(arguments)
- ProjectiveIndecomposableDimensions(G, K) : Grp, FldFin -> SeqEnum
- ProjectiveIndecomposableModule(I: parameters) : ModGrp -> ModGrp
- ProjectiveIndecomposableModules(G, K: parameters) : Grp, FldFin -> SeqEnum
- ProjectiveLine(k) : RngIntRes -> SetIndx, UserProgram
- ProjectiveLineProcess(V) : ModTupFld[FldFin] -> ProcPL
- ProjectiveMap(f, Y) : FldFunFracSchElt, Sch -> MapSch
- ProjectiveMap(L, Y) : [FldFunFracSchElt], Sch -> MapSch
- ProjectiveModule(B, i) : AlgBas, RngIntElt -> ModRng
- ProjectiveModule(B, S) : AlgBas, SeqEnum[RngIntElt] -> ModAlg, SeqEnum, SeqEnum
- ProjectiveOmega(arguments)
- ProjectiveOmegaMinus(arguments)
- ProjectiveOmegaPlus(arguments)
- ProjectiveOrder(a) : AlgMatElt -> RngIntElt
- ProjectiveOrder(A) : AlgMatElt -> RngIntElt, RngElt
- ProjectiveOrder(g) : GrpMatElt -> RngIntElt, RngElt
- ProjectivePlane(N : parameters) : Nfd -> PlaneProj, PlanePtSet, PlaneLnSet
- ProjectiveRationalFunction(f) : FldFunFracSchElt -> FldFunRatMElt
- ProjectiveResolution(M, n) : ModAlg, RngIntElt -> ModCpx, ModMatFldElt
- ProjectiveResolution(M, n) : ModAlgBas, RngIntElt -> ModCpx, ModMatFldElt
- ProjectiveResolution(PR) : Rec -> ModCpx, ModMatFldElt
- ProjectiveResolutionPGroup(PR) : Rec -> ModCpx
- ProjectiveSigmaLinearGroup(arguments)
- ProjectiveSigmaSymplecticGroup(arguments)
- ProjectiveSigmaUnitaryGroup(arguments)
- ProjectiveSpace(k,n) : Fld,RngIntElt -> Prj
- ProjectiveSpace(k,W) : Fld,[RngIntElt] -> Prj
- ProjectiveSpace(k,n) : Rng,RngIntElt -> Prj
- ProjectiveSpace(k,n) : Rng,RngIntElt -> Prj
- ProjectiveSpace(R) : RngMPol -> Prj
- ProjectiveSpecialLinearGroup(arguments)
- ProjectiveSpecialUnitaryGroup(arguments)
- ProjectiveSuzukiGroup(arguments)
- ProjectiveSymplecticGroup(arguments)
- ResolveProjectiveCurve(p) : RngMPolElt -> List, List, List, RngIntElt
- SimplicialProjectivePlane() : -> SmpCpx
V2.29, 21 October 2025