About
Calculator
Ordering
FAQ
Download
Documentation
Citations
Conferences
Links
Contact
CAG
Login
Magma
Computer • algebra
Documentation
Contents
Index (m)
Search
Modules-2
Grp_Modules-2 (Example H64E31)
modules-algebra
MODULES OVER AN ALGEBRA AND GROUP REPRESENTATIONS
modules-Galois-representations
varphi-modules and Galois Representations in Magma (MOD P GALOIS REPRESENTATIONS)
modules-matrix-algebra
Modules over a General Algebra (MODULES OVER AN ALGEBRA AND GROUP REPRESENTATIONS)
modules-multivariate
MODULES OVER MULTIVARIATE RINGS
ModulesOverCommonField
ModulesOverCommonField(M, N) : ModGrp, ModGrp -> ModGrp, ModGrp
ModulesOverSmallerField
ModulesOverSmallerField(Q, F) : SeqEnum, FldFin -> ModGrp
ModuleWithBasis
ModuleWithBasis(Q): SeqEnum -> ModAlg
Moduli
Moduli(L) : AlgLie -> SeqEnum
Moduli(M) : ModTupRng -> [ RngElt ]
ModuliPoints(X,E) : CrvMod, CrvEll -> SeqEnum
Moduli points
CrvMod_Moduli points (Example H140E1)
ModuliOfLieAlgebra
AlgLie_ModuliOfLieAlgebra (Example H110E29)
ModuliPoints
ModuliPoints(X,E) : CrvMod, CrvEll -> SeqEnum
Modulus
BlumBlumShubModulus(b) : RngIntElt -> RngIntElt
BBSModulus(b) : RngIntElt -> RngIntElt
Conductor(GR) : GrossenChar -> RngOrdIdl, SeqEnum
CongruenceModulus(A) : ModAbVar -> RngIntElt
CongruenceModulus(M : parameters) : ModSym -> RngIntElt
FactoredModulus(R) : RngIntRes -> RngIntEltFact
Modulus(c) : FldComElt -> FldReElt
Modulus(G) : GrpDrch -> RngIntElt
Modulus(chi) : GrpDrchElt -> RngIntElt
Modulus(G) : GrpDrchNF -> RngOrdIdl, SeqEnum
Modulus(OQ) : RngFunOrdRes -> RngFunOrdIdl
Modulus(R) : RngIntRes -> RngInt
Modulus(OQ) : RngOrdRes -> RngOrdIdl
Modulus(Q) : RngUPolRes -> RngUPolElt
Moebius
MoebiusMu(n) : RngIntElt -> RngIntElt
MoebiusStrip() : -> SmpCpx
MoebiusMu
MoebiusMu(n) : RngIntElt -> RngIntElt
MoebiusStrip
MoebiusStrip() : -> SmpCpx
Molien
MolienSeries(G) : GrpMat -> FldFunUElt
MolienSeriesApproximation(G, n) : GrpPerm, RngIntElt -> RngSerLaurElt
molien
Molien Series (INVARIANT THEORY)
MolienSeries
MolienSeries(G) : GrpMat -> FldFunUElt
RngInvar_MolienSeries (Example H120E5)
MolienSeriesApproximation
MolienSeriesApproximation(G, n) : GrpPerm, RngIntElt -> RngSerLaurElt
Monic
IsMonic(L) : RngDiffOpElt -> BoolElt
IsWeaklyMonic(L) : RngDiffOpElt -> BoolElt
MonicDifferentialOperator(L) : RngDiffOpElt -> RngDiffOpElt
MonicModel(F) : FldFun -> FldFun
MonicModel(f, q) : RngUPolElt, RngIntElt -> RngUPolElt, SeqEnum
ResolveAffineMonicSurface(s) : RngUPolElt -> List, RngIntElt
monic
Monic Models (HYPERELLIPTIC CURVES)
monic-models
Monic Models (HYPERELLIPTIC CURVES)
MonicDifferentialOperator
MonicDifferentialOperator(L) : RngDiffOpElt -> RngDiffOpElt
MonicModel
MonicModel(F) : FldFun -> FldFun
MonicModel(f, q) : RngUPolElt, RngIntElt -> RngUPolElt, SeqEnum
Monitored
MonitoredDistributedWorker(host, port, work_function) : MonStgElt, RngIntElt, UserProgram ->
MonitoredDistributedWorker
MonitoredDistributedWorker(host, port, work_function) : MonStgElt, RngIntElt, UserProgram ->
monitoring
Monitoring and Respawning Workers (PARALLELISM)
monitoring-respawning
Monitoring and Respawning Workers (PARALLELISM)
Monodromy
MonodromyPairing(P, Q) : ModSSElt, ModSSElt -> RngIntElt
MonodromyRepresentation(X): RieSrf -> SeqEnum
MonodromyWeights(M) : ModSS -> SeqEnum
ModSS_Monodromy (Example H147E9)
monodromy
The Monodromy Pairing (SUPERSINGULAR DIVISORS ON MODULAR CURVES)
monodromy-pairing
The Monodromy Pairing (SUPERSINGULAR DIVISORS ON MODULAR CURVES)
MonodromyPairing
MonodromyPairing(P, Q) : ModSSElt, ModSSElt -> RngIntElt
MonodromyRepresentation
MonodromyRepresentation(X): RieSrf -> SeqEnum
MonodromyWeights
MonodromyWeights(M) : ModSS -> SeqEnum
Monoid
FreeMonoid(n) : RngIntElt -> MonFP
IdealClassMonoidAbstract(R) : AlgEtQOrd -> AlgEtQICM,Map
Monoid< generators | relations > : MonFPElt, ..., MonFPElt, Rel, ..., Rel -> MonFP
OrderedIntegerMonoid() : -> MonOrd
OrderedMonoid(P) : MonPlc -> MonOrd
OrderedMonoid(M) : MonPlc -> MonOrd;
OrderedMonoid(n) : RngIntElt -> MonOrd
PlacticIntegerMonoid() : -> MonOrd
PlacticMonoid(O) : MonOrd -> MonOrd
TableauIntegerMonoid() : -> MonTbl
TableauMonoid(O) : MonOrd -> MonTbl
WeakEquivalenceClassMonoid(E) : AlgEtQOrd -> SeqEnum[AlgEtQIdl]
WeakEquivalenceClassMonoidAbstract(R) : AlgEtQOrd -> AlgEtQWECM,Map
SgpFP_Monoid (Example H86E2)
Contents
Index (m)
Search
V2.29, 28 November 2025