- j
  
 
  - j-key
  
 
  - J2
  
 
  - jac
  
 
  - Jac_Point_Counting
  
 
  - jac_rad
  
 
  - Jac_WeilPairing
  
 
  - Jacket
  
 
  - JacketMotive
  
 
  - jacmot
  
 
  - jacmot-functionality
  
 
  - Jacobi
  
    -  AbelJacobi(D, P) : DivRieSrfElt, RieSrfPt -> Mtrx
 
    -  AbelJacobi(P) : RieSrfPt -> Mtrx
 
    -  AbelJacobi(P, Q) : RieSrfPt, RieSrfPt -> Mtrx
 
    -  GaussJacobiIntegrationPoints(N,D,a,b) : RngIntElt, RngIntElt, RngReSubElt, RngReSubElt) -> SeqEnum,  SeqEnum
 
    -  Jacobi(~P, c, b, a, ~r) : GrpPCpQuotientProc, RngIntElt, RngIntElt, RngIntElt -> RngIntElt ->
 
    -  JacobiMotive(A, B) : SeqEnum, SeqEnum -> JacketMot
 
    -  JacobiSymbol(n, m) : RngIntElt, RngIntElt -> RngIntElt
 
    -  JacobiSymbol(a,b) : RngUPol, RngUPol -> RngIntElt
 
    -  JacobiTheta(q, z) : FldReElt, FldReElt -> FldReElt
 
    -  JacobiTheta(q, z) : FldReElt, RngSerElt[FldRe] -> RngSerElt
 
    -  JacobiThetaNullK(q, k) : FldReElt, RngIntElt -> FldReElt
 
  
 
  - jacobi
  
 
  - jacobi-arith
  
 
  - jacobi-attributes
  
 
  - jacobi-background
  
 
  - jacobi-creation
  
 
  - jacobi-dedekind
  
 
  - jacobi-examples
  
 
  - jacobi-kummer-tate
  
 
  - jacobi-l-func
  
 
  - jacobi-motive-first-example
  
 
  - jacobi-motive7
  
 
  - jacobi-operations
  
 
  - jacobi-relation-to-hypergeom
  
 
  - jacobi-same-overQ
  
 
  - Jacobi_motives
  
 
  - Jacobian
  
    -  AnalyticJacobian(f) : RngUPolElt -> AnHcJac
 
    -  FromAnalyticJacobian(z, A) : Mtrx, AnHcJac -> SeqEnum
 
    -  FromAnalyticJacobianProjective(z, A) : Mtrx[FldCom], AnHcJac -> SeqEnum
 
    -  Jacobian(C) : CrvHyp -> JacHyp
 
    -  Jacobian(model) : ModelG1  -> CrvEll
 
    -  Jacobian(C) : RngMPolElt -> CrvEll
 
    -  JacobianIdeal(f) : RngMPolElt -> RngMPol
 
    -  JacobianIdeal(C) : Sch -> RngMPol
 
    -  JacobianIdeal(X) : Sch -> RngMPol
 
    -  JacobianMatrix(C) : Sch -> ModMatRngElt
 
    -  JacobianMatrix(X) : Sch -> ModMatRngElt
 
    -  JacobianMatrix( [ f ] ) : [ RngMPolElt ] -> RngMPol
 
    -  JacobianOrdersByDeformation(Q, Y) : RngMPolElt, SeqEnum -> SeqEnum
 
    -  JacobianPoint(J, D) : JacHyp, DivCrvElt -> JacHypPt
 
    -  JacobianSubrankScheme(X) : Sch -> Sch
 
    -  ToAnalyticJacobian(x, y, A) : FldComElt, FldComElt, AnHcJac -> Mtrx
 
    -  ToAnalyticJacobianMumford(pt, AJ, conj) : JacHypPt, AnHcJac, RngIntElt -> Mtrx
 
    -  ToAnalyticJacobianMumford(pt, AJ) : JacHypPt, AnHcJac-> Mtrx
 
  
 
  - jacobian
  
 
  - jacobian-descent
  
 
  - jacobian_creation
  
 
  - JacobianIdeal
  
 
  - JacobianMatrix
  
 
V2.29, 21 October 2025