About
Calculator
Ordering
FAQ
Download
Documentation
Citations
Conferences
Links
Contact
CAG
Login
Magma
Computer • algebra
Documentation
Contents
Index (i)
Search
IsSquarefree
IsSquarefree(n) : RngIntElt -> BoolElt
IsSquarefree(I) : RngOrdIdl -> BoolElt
IsStandard
IsStandard(t) : Tbl -> BoolElt
IsStandardAffinePatch
IsStandardAffinePatch(A) : Aff -> BoolElt, RngIntElt
IsStandardParabolicSubgroup
IsStandardParabolicSubgroup(W, H) : GrpPermCox, GrpPermCox -> BoolElt
IsStarAlgebra
IsStarAlgebra(A) : AlgGen -> BoolElt
IsStarAlgebra(A) : AlgMat -> BoolElt
IsSteiner
IsSteiner(D, t) : Dsgn, RngIntElt -> BoolElt
IsStrictlyConvex
IsStrictlyConvex(C) : TorCon -> BoolElt
IsStringCGroup
IsStringCGroup(G) : GrpPerm -> BoolElt
IsStronglyAG
IsStronglyAG(C) : Code -> BoolElt
IsStronglyConnected
IsStronglyConnected(G) : GrphDir -> BoolElt
IsStronglyConnected(G) : GrphMultDir -> BoolElt
IsSubcanonicalCurve
IsSubcanonicalCurve(g,d,Q) : RngIntElt,RngIntElt,SeqEnum -> BoolElt,GRCrvK
IsSubfield
IsSubfield(F, L) : FldAlg, FldAlg -> BoolElt, Map
IsSubfield(K, L) : FldFun, FldFun -> BoolElt, Map
IsSubfield(F, L) : FldNum, FldNum -> BoolElt, Map
FldFunG_IsSubfield (Example H46E20)
IsSubfieldEmb
IsSubfieldEmb(K, L) : FldNumEmb, FldNumEmb -> BoolElt
IsSubgraph
IsSubgraph(G, H) : Grph, Grph -> BoolElt
IsSubgraph(G, H) : GrphMultUnd, GrphMultUnd -> BoolElt
IsSubgroup
IsSubgroup(H, K) : GrpFP, GrpFP -> BoolElt
IsSublattice
S subset L : LatNF, LatNF -> BoolElt
IsSublattice(S, L) : LatNF, LatNF -> BoolElt, Mtrx
IsSublattice(L) : TorLat -> BoolElt
IsSubmodule
IsSubmodule(M, N) : ModDed, ModDed -> BoolElt, Map
IsSubnormal
IsSubnormal(G, H) : GrpFin, GrpFin -> BoolElt
IsSubnormal(G, H) : GrpMat, GrpMat -> BoolElt
IsSubnormal(G, H) : GrpPC, GrpPC -> BoolElt
IsSubnormal(G, H) : GrpPerm, GrpPerm -> BoolElt
IsSubscheme
IsSubscheme(C,D) : Sch,Sch -> BoolElt
IsSubscheme(X, Y) : Sch,Sch -> BoolElt
IsSubsequence
IsSubsequence(S, T) : SeqEnum, SeqEnum -> BoolElt
IsSubspace
IsSubspace (A, B) : SpSpc, SpSpc -> BoolElt, SpMat
IsSubsystem
IsSubsystem(L,K) : LinearSys,LinearSys -> BoolElt
K subset L : LinearSys,LinearSys -> BoolElt
IsSubtensor
IsSubtensor(T, S) : TenSpcElt, TenSpcElt -> BoolElt
IsSubtensorSpace
IsSubtensorSpace(T, S) : TenSpc, TenSpc -> BoolElt
IsSUnit
IsSUnit(a, S) : FldFunElt, SetEnum[PlcFunElt] -> BoolElt
IsSUnitWithPreimage
IsSUnitWithPreimage(a, S) : FldFunElt, SetEnum[PlcFunElt] -> BoolElt, GrpAbElt
IsSupercuspidal
IsSupercuspidal(pi) : RepLoc -> BoolElt
IsSuperlattice
IsSuperlattice(L) : TorLat -> BoolElt
IsSupersingular
IsSupersingular(E : parameters) : CrvEll -> BoolElt
IsSuperSummitRepresentative
IsSuperSummitRepresentative(u: parameters) : GrpBrdElt -> BoolElt
IsSupportingHyperplane
IsSupportingHyperplane(v,h,P) : TorLatElt,FldRatElt,TorPol -> BoolElt,RngIntElt
IsSurjective
IsSurjective(f) : Map -> [ BoolElt ]
IsSurjective(f) : MapChn -> BoolElt
IsSurjective(phi) : MapModAbVar -> BoolElt
IsSurjective(a) : ModMatRngElt -> BoolElt
IsSurjective(f) : ModMPolHom -> BoolElt
IsSuzukiGroup
IsSuzukiGroup(G) : GrpMat -> BoolElt, RngIntElt
IsSymmetric
IsSymmetric(A) : AlgBas -> BoolElt
IsSymmetric(a) : AlgMatElt -> BoolElt
IsSymmetric(D) : Dsgn -> BoolElt
IsSymmetric(G) : GrphUnd -> BoolElt
IsSymmetric(G) : GrpPerm -> BoolElt
IsSymmetric(A) : Mtrx -> BoolElt
IsSymmetric(A) : MtrxSprs -> BoolElt
IsSymmetric(f) : RngMPolElt -> BoolElt, RngMPolElt
IsSymmetric(f) : RngMPolElt -> BoolElt, RngMPolElt
IsSymmetric(T) : TenSpc -> BoolElt
IsSymmetric(T) : TenSpcElt -> BoolElt
Ideal_IsSymmetric (Example H116E18)
RngInvar_IsSymmetric (Example H120E24)
IsSymplectic
IsSymplectic(L) : LSer -> BoolElt
IsOrthogonal(L) : LSer -> BoolElt
IsSymplectic(G) : GrpRed -> BoolElt
IsSymplecticCharacter
IsSymplecticCharacter(chi) : AlgChtrElt -> BoolElt
IsOrthogonalCharacter(chi) : AlgChtrElt -> BoolElt
IsSymplecticGroup
IsSymplecticGroup(G) : GrpMat -> BoolElt
IsSymplecticMatrix
IsSymplecticMatrix(A) : Mtrx -> BoolElt
IsSymplecticSelfDual
IsSymplecticSelfDual(C) : CodeAdd -> BoolElt
IsSymplecticSelfOrthogonal
IsSymplecticSelfOrthogonal(C) : CodeAdd -> BoolElt
IsSymplecticSpace
IsSymplecticSpace(W) : ModTupFld -> BoolElt
IsTameGenusGroup
IsTameGenusGroup(G) : Group -> BoolElt
IsTameGenusTensor
IsTameGenusTensor(t) : TenSpcElt -> BoolElt
IsTamelyRamified
IsTamelyRamified(K) : FldAlg -> BoolElt
IsTamelyRamified(A) : GalRep -> BoolElt
IsTamelyRamified(O) : RngFunOrd -> BoolElt
IsTamelyRamified(P) : RngFunOrdIdl -> BoolElt
IsTamelyRamified(P, O) : RngFunOrdIdl, RngFunOrd -> BoolElt
IsTamelyRamified(L) : RngLocA -> BoolElt
IsTamelyRamified(O) : RngOrd -> BoolElt
IsTamelyRamified(P) : RngOrdIdl -> BoolElt
IsTamelyRamified(P, O) : RngOrdIdl, RngOrd -> BoolElt
IsTamelyRamified(R) : RngPad -> BoolElt
Contents
Index (i)
Search
V2.29, 21 October 2025