About
Calculator
Ordering
FAQ
Download
Documentation
Citations
Conferences
Links
Contact
CAG
Login
Magma
Computer • algebra
Documentation
Contents
Index (i)
Search
IsFiniteMatrixGroup
GrpMatInf_IsFiniteMatrixGroup (Example H68E6)
IsFiniteMatrixGroupF
GrpMatInf_IsFiniteMatrixGroupF (Example H68E10)
GrpMatInf_IsFiniteMatrixGroupF (Example H68E7)
GrpMatInf_IsFiniteMatrixGroupF (Example H68E8)
GrpMatInf_IsFiniteMatrixGroupF (Example H68E9)
IsFiniteMatrixGroupFF
GrpMatInf_IsFiniteMatrixGroupFF (Example H68E2)
GrpMatInf_IsFiniteMatrixGroupFF (Example H68E3)
GrpMatInf_IsFiniteMatrixGroupFF (Example H68E4)
GrpMatInf_IsFiniteMatrixGroupFF (Example H68E5)
IsFiniteMatrixGroupFQ
GrpMatInf_IsFiniteMatrixGroupFQ (Example H68E1)
IsFiniteOrder
IsFiniteOrder(O) : RngFunOrd -> BoolElt
IsFirm
IsFirm(X) : IncGeom -> BoolElt
IsFlag
IsFlag(P) : TorPol -> BoolElt
IsFlex
IsFlex(C, p) : Sch,Pt -> BoolElt,RngIntElt
IsInflectionPoint(p) : Pt -> BoolElt,RngIntElt
IsFlipping
IsFlipping(X,i) : TorVar,RngIntElt -> BoolElt
IsForest
IsForest(G) : GrphUnd -> BoolElt
IsFree
IsFree(L) : LinearSys -> BoolElt
IsBasePointFree(L) : LinearSys -> BoolElt
IsFree(G) : GrpAb -> BoolElt
IsFree(L) : LatNF -> BoolElt
IsFree(M) : ModDed -> BoolElt
IsFree(M) : ModGrp -> BoolElt
IsFree(M) : ModMPol -> BoolElt
IsFrobenius
IsFrobenius(G) : GrpPerm -> BoolElt
IsFTGeometry
IsFTGeometry(C) : CosetGeom -> BoolElt
IsFTGeometry(D) : IncGeom -> BoolElt
IsFuchsianOperator
IsFuchsianOperator(L) : RngDiffOpElt -> BoolElt, SetEnum
IsFull
IsFull(L) : Lat -> BoolElt
IsFull(L) : LatNF -> BoolElt
IsFullyNondegenerate
IsFullyNondegenerate(T) : TenSpcElt -> BoolElt
IsFundamental
IsFundamentalDiscriminant(D) : RngIntElt -> BoolElt
IsFundamental(D) : RngIntElt -> BoolElt
IsFundamentalDiscriminant
IsFundamentalDiscriminant(D) : RngIntElt -> BoolElt
IsFundamental(D) : RngIntElt -> BoolElt
IsGamma0
IsGamma0(G) : GrpPSL2 -> BoolElt
IsGamma0(M) : ModFrm -> BoolElt
IsGamma1
IsGamma1(G) : GrpPSL2 -> BoolElt
IsGamma1(M) : ModFrm -> BoolElt
IsGE
IsGE(u, v: parameters) : GrpBrdElt, GrpBrdElt -> BoolElt
IsGe(u, v: parameters) : GrpBrdElt, GrpBrdElt -> BoolElt
u ≥v : GrpBrdElt, GrpBrdElt -> BoolElt
IsGe
IsGE(u, v: parameters) : GrpBrdElt, GrpBrdElt -> BoolElt
IsGe(u, v: parameters) : GrpBrdElt, GrpBrdElt -> BoolElt
u ≥v : GrpBrdElt, GrpBrdElt -> BoolElt
IsGeneralizedCartanMatrix
IsGeneralizedCartanMatrix(C) : AlgMatElt -> BoolElt
IsGeneralizedCharacter
IsGeneralizedCharacter(x) : AlgChtrElt -> BoolElt
IsGenuineWeightedDynkinDiagram
IsGenuineWeightedDynkinDiagram( L, wd ) : AlgLie, SeqEnum -> BoolElt, SeqEnum
IsGenus
IsGenus(G) : SymGen -> BoolElt
IsGenusOneModel
IsGenusOneModel(f) : RngUPolElt -> BoolElt, ModelG1
IsGeometricallyHyperelliptic
IsGeometricallyHyperelliptic(C) : Crv -> BoolElt, Crv, MapSch
IsHyperelliptic(C) : Crv -> BoolElt, CrvHyp, MapSch
IsGL2Equivalent
IsGL2Equivalent(f, g, n) : RngUPolElt, RngUPolElt, RngIntElt -> BoolElt, SeqEnum
IsGL2EquivalentExtended
IsGL2EquivalentExtended(f1, f2, deg) : RngUPolElt, RngUPolElt, RngIntElt -> BoolElt, List
IsGLattice
IsGLattice(L) : Lat -> GrpMat
IsGLConjugate
IsGLConjugate(H, K) : GrpMat, GrpMat -> BoolElt, GrpMatElt | Unass
IsGLConjugate(H, K) : GrpMat, GrpMat -> BoolElt, GrpMatElt | Unass
IsGlobal
IsGlobal(F) : FldFunG -> BoolElt
IsGloballySplit
IsGloballySplit(C, l) : , UserProgram -> BoolElt, UserProgram
IsGlobalUnit
IsGlobalUnit(a) : FldFunElt -> BoolElt
IsGlobalUnit(a) : FldFunElt -> BoolElt
IsGlobalUnitWithPreimage
IsGlobalUnitWithPreimage(a) : FldFunElt -> BoolElt, GrpAbElt
IsGlobalUnitWithPreimage(a) : FldFunElt -> BoolElt, GrpAbElt
IsGLQConjugate
IsGLQConjugate(G, H) : GrpMat, GrpMat -> BoolElt, GrpMatElt
IsGLZConjugate
IsSLZConjugate(A, B) : AlgMatElt, AlgMatElt -> BoolElt, GrpMatElt
IsGLZConjugate(A, B) : AlgMatElt, AlgMatElt -> BoolElt, GrpMatElt
IsGLZConjugate(G, H) : GrpMat[RngInt], GrpMat[RngInt] -> BoolElt, GrpMatElt
IsGood
GrpPC_IsGood (Example H70E29)
IsGorenstein
IsGorenstein(X) : Sch -> BoolElt
IsArithmeticallyCohenMacaulay(X) : Sch -> BoolElt
IsArithmeticallyGorenstein(X) : Sch -> BoolElt
IsCohenMacaulay(X) : Sch -> BoolElt
IsGorenstein(O, p) : AlgAssVOrd , RngOrdIdl -> BoolElt, RngIntElt
IsGorenstein(O) : AlgAssVOrd -> BoolElt, .
IsGorenstein(O) : AlgEtQOrd->BoolElt
IsGorenstein(C) : TorCon -> BoolElt
IsGorenstein(F) : TorFan -> BoolElt
IsGorenstein(X) : TorVar -> BoolElt
IsGorensteinAtPrime
IsGorensteinAtPrime(S, P) : AlgEtQOrd, AlgEtQIdl -> BoolElt
IsGorensteinSurface
IsGorensteinSurface(B) : GRBskt -> BoolElt
IsGorensteinSurface(p) : GRPtS -> BoolElt
IsGraded
IsHomogeneous(M) : ModMPol -> BoolElt
IsGraded(M) : ModMPol -> BoolElt
IsGraded(f) : ModMPolHom -> BoolElt
IsGradedIsomorphic
IsGradedIsomorphic(A, B) : AlgBas, AlgBas -> Bool, ModMatFldElt
IsGraph
IsGraph(C) : CosetGeom -> GrphUnd
IsGraph(D) : IncGeom -> GrphUnd
IsGroebner
IsGroebner(S) : { RngMPolElt } -> BoolElt
IsHadamard
IsHadamard(H) : AlgMatElt -> BoolElt
Contents
Index (i)
Search
V2.29, 21 October 2025