- IsCompact
- IsCompactHyperbolic
- IsComplete
- IsCompletelyReducible
- IsComplex
- IsConcurrent
- IsConditioned
- IsConfluent
- IsCongruence
- IsConic
- IsConjugate
- IsConjugate(x, y) : AlgChtrElt, AlgChtrElt -> BoolElt, RngIntElt
- IsConjugate(G, H, K) : GrpFin, GrpFin, GrpFin -> BoolElt, GrpFinElt
- IsConjugate(G, H, K) : GrpFin, GrpFin, GrpFin -> BoolElt, GrpFinElt
- IsConjugate(G, g, h) : GrpFin, GrpFinElt, GrpFinElt -> BoolElt, GrpFinElt
- IsConjugate(G, g, h) : GrpFin, GrpFinElt, GrpFinElt -> BoolElt, GrpFinElt
- IsConjugate(F, H, K) : GrpFP, GrpFP, GrpFP -> BoolElt, GrpFPElt
- IsConjugate(G, H, K) : GrpFP, GrpFP, GrpFP -> BoolElt, GrpFPElt
- IsConjugate(F, x, y) : GrpFP, GrpFPElt, GrpFPElt -> BoolElt, GrpFPElt
- IsConjugate(G, H, K) : GrpGPC, GrpGPC, GrpGPC -> BoolElt, GrpGPCElt
- IsConjugate(G, H, K) : GrpGPC, GrpGPC, GrpGPC -> BoolElt, GrpGPCElt
- IsConjugate(G, g, h) : GrpGPC, GrpGPCElt, GrpGPCElt -> BoolElt, GrpGPCElt
- IsConjugate(G, H, K) : GrpMat, GrpMat, GrpMat -> BoolElt, GrpMatElt | Unass
- IsConjugate(G, g, h) : GrpMat, GrpMatElt, GrpMatElt -> BoolElt, GrpMatElt | Unass
- IsConjugate(G, H, K) : GrpPC, GrpPC, GrpPC -> BoolElt, GrpPCElt
- IsConjugate(G, g, h) : GrpPC, GrpPCElt, GrpPCElt -> BoolElt, GrpPCElt
- IsConjugate(G, g, h) : GrpPC, GrpPCElt, GrpPCElt -> BoolElt, GrpPCElt
- IsConjugate(G, Y, y, z) : GrpPerm, GSet, Elt, Elt -> BoolElt, GrpPermElt
- IsConjugate(u, v: parameters) : GrpBrdElt, GrpBrdElt -> BoolElt, GrpBrdElt
- IsConjugate(G, H, K: parameters) : GrpPerm, GrpPerm, GrpPerm -> BoolElt, GrpPermElt
- IsConjugate(G, g, h: parameters) : GrpPerm, GrpPermElt, GrpPermElt -> BoolElt, GrpPermElt
- IsIsomorphic(S, T) : AlgQuatOrd, AlgQuatOrd -> BoolElt, Map, AlgQuatElt
- IsConjugateStable
- IsConnected
- IsConsistent
- IsConsistent(G) : GrpGPC -> BoolElt
- IsConsistent(G) : GrpPC -> BoolElt
- IsConsistent(A, w) : ModMatRngElt, ModTupRng -> BoolElt, ModTupRngElt, ModTupRng
- IsConsistent(A, W) : ModMatRngElt, [ ModTupRng ] -> BoolElt, [ ModTupRngElt ], ModTupRng
- IsConsistent(A, W) : Mtrx, Mtrx -> BoolElt, Mtrx, ModTupRng
- IsConsistent(A, Q) : Mtrx, [ ModTupRng ] -> BoolElt, [ ModTupRngElt ], ModTupRng
- IsConsistent (M, v) : SpMat, SpVec -> BoolElt, SpVec
- GrpPC_IsConsistent (Example H70E3)
- isconsistent
- IsConstant
- IsConstantCurve
- IsContravariant
- IsConway
- IsCoprime
- IsCorootSpace
- IsCovariant
- IsCoxeterAffine
- IsCoxeterCompactHyperbolic
- IsCoxeterFinite
- IsCoxeterGraph
V2.29, 21 October 2025