- hypergeom-identify
- hypergeom-lseries
- hypergeom-mot-first-example
- hypergeom-utility
- Hypergeometric
- HypergeometricData(L) : List -> HypGeomData
- HypergeometricData(A, B) : SeqEnum, SeqEnum -> HypGeomData
- HypergeometricData(G) : SeqEnum[RngIntElt] -> HypGeomData
- HypergeometricData(F, G) : SeqEnum[RngIntElt], SeqEnum[RngIntElt] -> HypGeomData
- HypergeometricData(E) : SeqEnum[SeqEnum] -> HypGeomData
- HypergeometricMotiveSaveLimit(n) : RngIntElt ->
- HypergeometricSeries(a, b, c, z) : RngElt, RngElt, RngElt, RngElt -> RngElt
- HypergeometricSeries(a,b,c, z) : RngElt, RngElt, RngElt, RngElt -> RngElt
- HypergeometricSeries2F1(A,B,C,z) : FldRatElt, FldRatElt, FldRatElt, FldComElt -> FldComElt
- HypergeometricTrace(H, t, q) : HypGeomData, RngQZElt, RngIntElt -> RngIntElt
- HypergeometricTraceK(A, B, t, q) : SeqEnum, SeqEnum, RngQZElt, RngIntElt -> FldPadElt
- HypergeometricU(a, b, s) : FldReElt, FldReElt, FldReElt -> FldReElt
- PossibleHypergeometricData(d) : RngIntElt -> SeqEnum
- hypergeometric
- hypergeometric-motives
- hypergeometric-tracek
- Hypergeometric2F1
- HypergeometricData
- HypergeometricMotiveClearTable
- HypergeometricMotiveSaveLimit
- HypergeometricSeries
- HypergeometricSeries(a, b, c, z) : RngElt, RngElt, RngElt, RngElt -> RngElt
- HypergeometricSeries(a,b,c, z) : RngElt, RngElt, RngElt, RngElt -> RngElt
- HypergeometricSeries2F1
- HypergeometricTrace
- HypergeometricTraceK
- HypergeometricU
- Hyperplane
- HyperplaneAtInfinity
- HyperplaneSectionDivisor
- HyperplaneToPolyhedron
- Hypersurface
- EffectiveHypersurfaceTwist(D) : DivSchElt -> DivSchElt, RngMPolElt
- HypersurfaceSingularityExpandFunction(dat,f,prec,R): Rec, FldFunRatMElt, RngIntElt, RngMPol -> RngMPolElt, RngMPolElt
- HypersurfaceSingularityExpandFurther(dat,prec,R): Rec, RngIntElt, RngMPol -> RngMPolElt
- IsHypersurface(X) : Sch -> BoolElt, RngMPolElt
- IsHypersurfaceDivisor(D) : DivCrvElt -> BoolElt, RngElt, RngIntElt
- IsHypersurfaceSingularity(p,prec) : Pt, RngIntElt -> BoolElt, RngMPolElt, SeqEnum, Rec
- MilnorNumberAnalyticHypersurface(dat) : Rec -> RngIntElt
- NormalFormOfHypersurfaceSingularity(f) : RngMPol -> BoolElt, RngMPolElt, MonStgElt, Map
- ParametrizeProjectiveHypersurface(X, P2) : Srfc, Prj -> BoolElt, MapSch
- HypersurfaceSingularityExpandFunction
- HypersurfaceSingularityExpandFurther
- hypgeom-mot
- hypsplit
V2.29, 21 October 2025