About
Calculator
Ordering
FAQ
Download
Documentation
Citations
Conferences
Links
Contact
CAG
Login
Magma
Computer • algebra
Documentation
Contents
Index (a)
Search
AlgebraStructure
AlgebraStructure(A) : AlgMat -> Rec
AlgFPLHom
AlgLie_AlgFPLHom (Example H110E10)
AlgGroup1
RngInvar_AlgGroup1 (Example H120E20)
AlgGroup2
RngInvar_AlgGroup2 (Example H120E21)
alglieextr
Constructing Lie Algebras Generated by Extremal Elements (LIE ALGEBRAS)
Instances of Lie Algebras Generated by Extremal Elements (LIE ALGEBRAS)
Lie Algebras Generated by Extremal Elements (LIE ALGEBRAS)
Properties of Lie Algebras Generated by Extremal Elements (LIE ALGEBRAS)
Studying the Parameter Space (LIE ALGEBRAS)
alglieextr-construct
Constructing Lie Algebras Generated by Extremal Elements (LIE ALGEBRAS)
alglieextr-instances
Instances of Lie Algebras Generated by Extremal Elements (LIE ALGEBRAS)
alglieextr-properties
Properties of Lie Algebras Generated by Extremal Elements (LIE ALGEBRAS)
alglieextr-variety
Studying the Parameter Space (LIE ALGEBRAS)
AlgLieExtrBasis
AlgLie_AlgLieExtrBasis (Example H110E12)
AlgLieExtrConstr
AlgLie_AlgLieExtrConstr (Example H110E11)
AlgLieExtrfVal
AlgLie_AlgLieExtrfVal (Example H110E15)
AlgLieExtrMultInstance
AlgLie_AlgLieExtrMultInstance (Example H110E14)
AlgLieExtrMultTable
AlgLie_AlgLieExtrMultTable (Example H110E13)
AlgLieExtrVarietyDims
AlgLie_AlgLieExtrVarietyDims (Example H110E16)
algmod
Construction of Algebra Modules (MODULES OVER AN ALGEBRA AND GROUP REPRESENTATIONS)
algmod-construction
Construction of Algebra Modules (MODULES OVER AN ALGEBRA AND GROUP REPRESENTATIONS)
AlgModCreate
ModAlg_AlgModCreate (Example H99E44)
Algorithm
HasAdditionAlgorithm(J) : JacHyp -> Bool
algorithm
Computing the Class Invariants (BRAID GROUPS)
Division Algorithm (QUADRATIC FIELDS)
Euclidean Algorithm (SERIES RINGS OVER p-ADIC RINGS)
Magma's Evaluation Process (MAGMA SEMANTICS)
Overview of Facilities (FINITELY PRESENTED GROUPS)
Sketch of the Algorithm (FINITELY PRESENTED ALGEBRAS)
The Composition Tree Algorithm (MATRIX GROUPS OVER FINITE FIELDS)
Algorithmic
AlgorithmicFunctionField(F) : FldFunFracSch -> FldFun, Map
AlgorithmicFunctionField
AlgorithmicFunctionField(F) : FldFunFracSch -> FldFun, Map
algorithms
Algorithms (MODULAR FORMS OVER IMAGINARY QUADRATIC FIELDS)
Algorithms and Supported Groups (ALGEBRAIC MODULAR FORMS)
Algorithms and the Jacquet-Lang-lands Correspondence (HILBERT MODULAR FORMS)
Euclidean Algorithms, GCDs and LCMs (DIFFERENTIAL RINGS)
AlgQEATP
AlgQEA_AlgQEATP (Example H112E7)
AlgReln1
FldFunG_AlgReln1 (Example H46E41)
AlgReln2
FldFunG_AlgReln2 (Example H46E42)
all
All Subgroups and Intermediate Subgroups (GROUPS)
Constructing All Irreducible K[G]-Modules (MODULES OVER AN ALGEBRA AND GROUP REPRESENTATIONS)
all-extensions
RngLoc_all-extensions (Example H49E29)
all-subgroups
All Subgroups and Intermediate Subgroups (GROUPS)
AllCliques
AllCliques(G : parameters) : GrphUnd -> SeqEnum
AllCliques(G, k : parameters) : GrphUnd, RngIntElt -> SeqEnum
AllCliques(G, k, m : parameters) : GrphUnd, RngIntElt, BoolElt -> SeqEnum
AllCMTypes
AllCMTypes(A) : AlgEtQ -> SeqEnum[AlgEtQCMType]
AllCompactChainMaps
AllCompactChainMaps(PR) : Rec -> Rec
AllCones
AllCones(F) : TorFan -> SeqEnum
AllDefiningPolynomials
AllDefiningPolynomials(f) : MapSch -> SeqEnum
Alldeg
Alldeg(G, n) : GrphDir, RngIntElt -> { GrphVert }
Alldeg(G, n) : GrphMultDir, RngIntElt -> { GrphVert }
Alldeg(G, n) : GrphMultUnd, RngIntElt -> { GrphVert }
Alldeg(G, n) : GrphUnd, RngIntElt -> { GrphVert }
AllExtensions
AllExtensions(R, n) : RngPad, RngIntElt -> [RngPad]
AllFaces
AllFaces(N) : NwtnPgon -> SeqEnum
AllHomomorphisms
Homomorphisms(G, H) : GrpAb, GrpAb -> [Map]
AllHomomorphisms(G, H) : GrpAb, GrpAb -> [Map]
AllInformationSets
AllInformationSets(C) : Code -> [ [ RngIntElt ] ]
AllInverseDefiningPolynomials
AllInverseDefiningPolynomials(f) : MapSch -> SeqEnum
AllIrreduciblePolynomials
AllIrreduciblePolynomials(F, m) : FldFin, RngIntElt -> { RngUPolElt }
AllIsotropicSubspaces
AllIsotropicSubspaces(V, k) : ModTupFld[FldFin], RngIntElt -> [ ModTupFld[FldFin] ]
AllLinearRelations
AllLinearRelations(q,p): SeqEnum, RngIntElt -> Lat
AllNilpotentLieAlgebras
AllNilpotentLieAlgebras(F, d) : Fld, RngIntElt -> SeqEnum
AllPairsShortestPaths
AllPairsShortestPaths(G : parameters) : Grph -> SeqEnum, SeqEnum
AllParallelClasses
AllParallelClasses(D) : Inc -> SeqEnum
AllParallelisms
AllParallelisms(D) : Inc -> SeqEnum
AllPartitions
AllPartitions(G) : GrpPerm -> SetEnum
AllPassants
AllPassants(P, A) : Plane, { PlanePt } -> { PlaneLn }
ExternalLines(P, A) : Plane, { PlanePt } -> { PlaneLn }
AllRays
AllRays(F) : TorFan -> SeqEnum
AllResolutions
AllResolutions(D) : Inc -> SeqEnum
AllResolutions(D, λ) : Inc, RngIntElt -> SeqEnum
AllRoots
AllRoots(a, n) : FldFinElt, RngIntElt -> SeqEnum
AllSecants
AllSecants(P, A) : Plane, { PlanePt } -> { PlaneLn }
AllSlopes
LowerSlopes(N) : NwtnPgon -> SeqEnum
AllSlopes(N) : NwtnPgon -> SeqEnum
InnerSlopes(N) : NwtnPgon -> SeqEnum
AllSolvableLieAlgebras
AllSolvableLieAlgebras(F, d) : Fld, RngIntElt -> SeqEnum
Contents
Index (a)
Search
V2.29, 21 October 2025