- Introduction
 
  - Free Groups and Words
  
    - Construction of a Free Group
    
 
    - Construction of Words
    
 
    - Access Functions for Words
    
 
    - Arithmetic Operators for Words
    
 
    - Comparison of Words
    
 
    - String Operations on Words
    
      - Eliminate(u, x, v) : GrpFPElt, GrpFPElt, GrpFPElt -> GrpFPElt
 
      - Eliminate(U, x, v) : { GrpFPElt }, GrpFPElt, GrpFPElt -> { GrpFPElt }
 
      - Match(u, v, f) : GrpFPElt, GrpFPElt, RngIntElt -> BoolElt, RngIntElt
 
      - RotateWord(u, n) : GrpFPElt, RngIntElt -> GrpFPElt
 
      - Substitute(u, f, n, v) : GrpFPElt, RngIntElt, RngIntElt, GrpFPElt -> GrpFPElt
 
      - Subword(u, f, n) : GrpFPElt, RngIntElt, RngIntElt -> GrpFPElt
 
      - Example GrpFree_WordOps (H78E4)
 
    
 
  
 
  - Finitely Generated Subgroups of Free Groups
  
    - Supergroup(F) : GrpFP -> GrpFP
 
    - x in H: GrpFP, GrpFPElt -> BoolElt
 
    - IsSubgroup(H, K) : GrpFP, GrpFP -> BoolElt
 
    - H eq K : GrpFP, GrpFP -> BoolElt
 
    - Index(F, H) : GrpFP, GrpFP -> RngIntElt
 
    - HasFiniteIndex(F, H) : GrpFP, GrpFP -> BoolElt
 
    - FreeGenerators(H) : GrpFP -> SeqEnum, GrpFP
 
    - H meet K : GrpFP, GrpFP -> GrpFP
 
    - Centraliser(F,x) : GrpFP, GrpFPElt -> GrpFP
 
    - IsConjugate(F, x, y) : GrpFP, GrpFPElt, GrpFPElt -> BoolElt, GrpFPElt
 
    - Centraliser(F, H) : GrpFP, GrpFP -> GrpFP
 
    - Normaliser(F, H) : GrpFP, GrpFP -> GrpFP
 
    - IsConjugate(F, H, K) : GrpFP, GrpFP, GrpFP -> BoolElt, GrpFPElt
 
    - Example GrpFree_free-subgroups (H78E5)
 
  
 
  - The Automorphism Group of a Free Group
  
 
  - Bibliography
 
V2.29, 21 October 2025